In this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.
The characteristics of atmospheric-pressure glow discharge (APGD) produced by rod-plate electrodes are experimentally determined. APGD is sustained by applying a high DC voltage between the electrodes. At atmospheric pressure, the shift from corona discharge to glow discharge is investigated. A rod-plate discharges configuration's volt–ampere properties show the existence of three discharge regimes: corona, glow, and spark. The variations in the electrical field distribution in the various regimes are mirrored in the discharge luminosity. The rod-plate patterns are created under a dark region, and are visible mainly due to the effect of electrons heated by the local enhanced electric field at the interface, according to the op
... Show MoreIn this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show MoreIn this work, the electrostatic probe was utilized to estimate the density of electrons for plasma generated around reentry vehicles that have a geometrically blunt nose at high-altitude. The thermocouple uses to measured electron temperature, which is equal to the temperature of the gas, on board the MAC spacecraft. In the spacecraft backflow field, electrostatic probe measurements were taken at five separate regions 1 to 5 cm from the body of the spacecraft. Over an altitude range of 90 to 50 km with an electron density of 108 to 1012 1/cm3, respectively. The measured electron temperature ranged from 0.05 to 0.9 electron volts and the maximum re-entry velocity of the spacecraft was about 7048 m
... Show MorePMMA/TiO2 homogeneous thin films were deposited by using plasma jet system under normal atmospheric pressure and room temperature. PMMA/TiO2 nanocomposite thin film synthesized by plasma polymerization. Titanium oxide was mixed with Methyl Methacrylate Monomer (MMA) with specific weight ratios (1, 3 and 5 grams of TiO2 per 100 ml of MMA). Optical properties of PMMA/TiO2 nanocomposite thin films were characterized by UV-Visible absorption spectra using a double beam UV-Vis-NIR Spectrophotometer. The thin films surface morphological analysis is carried out by employing SEM. The structure analysis are achieved by X-ray diffraction. UV-Visible absorption spectra shows that the increasing the concentration of titanium oxide added to the polym
... Show MoreIn this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.
A number of pulsed experiments have been carried out using a high-voltage circuit containing R,L, and C in certain arrangements. A spherical spark gap of steel electrodes was used as a high-current switch operated by a voltage of up to 8kV and triggered in both self-triggering and third-electrode triggering modes. Current measurements were carried out by using both current-viewing resistor and Rogowski coils designed for this purpose. Typical current waveforms have shown obvious dominating inductance effect of the circuit components in an underdamped oscillation. The behavior of the circuit impedance was studied by recording both pulsed current peaks and the charging voltages when currents of up to 2.5kA were recorded. The dur
... Show MoreA theoretical investigation is carried out to study the effect of a pencil electron beam propagating inside the plasma region determining the hydrodynamic densities distribution with the aid of numerical analysis finite deference method (FDM).The plasma is generated and trapped by annular electron beams of fixed electron density 1x1014 m-3. The result of the study shows that the hydrodynamic density behaves as the increase in pencil electron beam. The hydrodynamic density ratio goes to more than double as the increase in pencil electron beam density to 1x1018 m-3.
Abstract- Plasma parameters in a planar dc-sputtering discharge in argon were measured by cylindrical electrostatic probe (Langmuir probe).Electron density, electron temperature, floating potential, and space potential were monitored as a function of working discharge pressure. Electrostatic probe and supporting circuit were described and used to plot the current – voltage characteristics. Plasma properties were inferred from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values are in the range of (10-16 -10-17) m-3 and (2.93 – 5.3) eV for the electron density and the electron temperature respectively.
This research studies the effect regarding two plasma types, plasma jet and plasma-activated water (PAW), on tooth root canal bacteria Enterococcus faecalis. The plasma jet works with argon gas, and it is generated by a power supply that operates at alternating high voltages in the form of a sinusoidal wave with peak-to-peak value of about 12 kV at a frequency of 30 KHz and its power is about 200 watts. This plasma was utilized directly to treat the tooth canal and indirectly by activating the water that was used later for treating the Enterococcus faecalis bacteria that are present in the tooth root. Pure distilled water was treated by plasma jet for one hour at flow rate 1 . Plasma water activated by plasma contains
... Show MoreThe flow emission rate of hard photons from lowest order the QCD processes for quark-anti quark annihilation processes in plasma media at high temperatures (175, 200, 225, 250 and 275 MeV) have been study. In these framework photons, the flow photons emission is calculate according to quark-antiquark annihilation using the quantum chromodynamic theory and solves the ultrarelativistic equation with MATLAP program. Due to the results, we show increases flow photons rate with increases strength coupling and increases with increases temperature of media, it indicate that logarithmically divergent thermal effect on photons product. The critical temperature (Tc=155 to 195 MeV) effect on the quarks confined in hadronic matter phase, it is importan
... Show More