In this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.
Poly(L-lactic acid) (PLLA)/poly(caprolactone) (PCL) and two types of organoclay (OMMT) including a fatty amide and ocatdecylamine montmorillonite (FA-MMT and ODA-MMT) were employed to produce polymer nanocomposites by melt blending. Materials were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), elemental analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties were also investigated for these nanocomposites. The nanocomposites showed increasing mechanical properties and thermal stability. XRD results indicated that the materials formed nanocomposites. SEM morphology showed that increasing content of OMMT reduc
... Show MoreThe wall of the esophagus in Mabuya aurata septemaeniata as in high vertebrates consists of four layers, mucosa, submucosa,muscularis and serosa. Mucosa forms many unorganized short and long folds penetrate inside the esophageal cavity. Mucosa contains two sub layers, first one is lining epithelium which includes two types of cells, simple ciliated columnar epithelial cells and goblet cells, second one is lamina properia. Mucosa does not have muscularis mucosa. There is no esophageal glands within esophagus. Many special stains were used as (Periodic Acid Schiff (PAS)) to detect Carbohydrates in goblet cells. Alcian blue were used to detect the amount of goblet cells within lining epithelium. Alcian blue + PAS together confirm that the
... Show MoreThe microdrilling and nanodrilling holes are produced by a Q-switched Nd :YAG laser (1064 nm) interaction with 8009 Al alloy using nanoparticles. Two kinds of nanoparticles were used with this alloy. These nanoparticles are tungsten carbide (WC) and silica carbide (SiC). In this work, the microholes and nanoholes have been investigated with different laser pulse energies (600, 700 and 800)mJ, different repetition rates (5Hz and 10Hz) and different concentration of nanoparticles (90%, 50% and 5% ). The results indicate that the microholes and nanoholes have been achieved when the laser pulse energy is 600 mJ, laser repetition rate is 5Hz, and the concentration of the nanoparticles (for the two types of n
... Show MoreThe present study was carried out onAl-Saqlawiya poultry farm's soil (Anbar, Iraq) for the period of 8 months (November 2018- June 2019). A total of 75 samples of poultry droppings were collectedrandomly. 552 individuals of mite,belonging to 3 orders and 8 families representing 15 species, were found. These species were: Acarus gracilis, Acarus siro, Caloglyphus berlesi, Androlaelaps casalis, Sejus temperaticus, Parasitus paraconsanguineus, Eugamasus butleri, Macrocheles medarius, Macrocheles glaber, Macrocheles muscaedomesticae, Macrocheles matrius, Kleemannia plumosus, Cheyletus eruditus, Cheyletus malaccensis, and Pyemotes herfsi.
The highest population density belonged to order
... Show MoreAbstract
The hydrometallurgical method was used to platinum and palladium leaching with aqua regia solution (3HCl: HNO3). The leaching experiments were designed to obtain the optimum conditions by using Taguchi method with 16 experiments at three different factors (time, temperature and solid to liquid ratio), and each factor has four different levels. In this study, leaching the powder sample of catalytic converter that contains platinum and palladium was conducted on the basis of the formation of chloro complexes platinum and palladium (PtCl62-, PdCl42-) with different concentrations in the acidic solution. The optimum condi
... Show MoreResearch summary
Westernization is a term not familiar to our scholars at the beginning of the emergence of translation from Western literature, sciences and arts in its detailed form now.
Westernization was not an issue that those Greeks, Persians, Romans, Indians and others worked on translating those sciences and cultures. Rather, it was a process of transferring a new philosophy and logic that had not been previously seen by the Arabs, so they were affected by it in a strange way, to the point of fascination by some of them. For this reason, this research came to clarify these issues and address them within the scientific methodology.
This study aimed to extraction of essential oil from peppermint leaves by using hydro distillation methods. In the peppermint oil extraction with hydro distillation method is studied the effect of the extraction temperature to the yield of peppermint oil. Besides it also studied the kinetics during the extraction process. Then, 2nd -order mechanism was adopted in the model of hydro distillation for estimation many parameters such as the initial extraction rate, capacity of extraction and the constant rat of extraction with various temperature. The same model was also used to estimate the activation energy. The results showed a spontaneous process, since the Gibbs free energy had a value negative sign.
Indium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.