Gold nanoparticles AuNPs have proven to be powerful tools in various nanomedicine applications, because of their photo-optical distinctiveness and biocompatibility. Noble metal gold nanoparticles was prepared by pulsed laser ablation method (1064-Nd: YAG with various Laser power from 200 to 800 mJ and 1 Hz frequency) in distil water. The process was characterized using UV-VIS absorption spectroscopy. Morphology and average size of nanoparticles were estimated using AFM and X-ray diffraction (XRD) analysis which show the nature of gold nanoparticles (AuNPs). Antibacterial activity of gold nanoparticles as a function of particles concentration against gram negative bacterium Escherichia coli and gram positive bacterial Staphylococcus aureus was carried out in solid growth media. Gold nanoparticles show high antibacterial activity with zone of inhibition. Antibacterial activities of the synthesized Au nanoparticles were assessed by agar well diffusion method. The stabilized AuNPs exhibited excellent antibacterial sensitivity (12-27 mm) to E. coli and (26-38mm) to Staph aureus.
Meta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
Liquid – liquid interface reaction is one of the method to prepare nanoparticles, the preparation of nanoparticles depends on the super saturation of ions which can satisfy by layered two immiscible liquid (toluene and deionized (DI) water). The XRD-diffraction analysis give a mix structure from hexagonal and cubic and the average grain size is 7.73 nm using Sherrer relation and 9.54 nm using Williamson –Hall method. Transmission electron microscopy (TEM) Showed that the size of particles around 3 nm which is comparable with Bohr radius of CdS.
From UV-Visible spectrum analysis which use two model to estimate the radius of particles , the first one is effective mass approximate (EMA) model and the second one is tight binding model
In search of novel antibacterial agent, a series of new isatin derivatives (3a-d) have been synthesized by condensation isatin (2,3-indolinendione) with piperidine (hexahydropyridine), hydrazine hydrate and Boc-amino acids respectively. Compounds synthesized have been characterized by IR spectroscopy and elemental analysis. In addition, the in vitro antibacterial properties have been tested against E. coli, P. aeruginosa, and Bacillus cereus, S. aureus by employing the well diffusion technique. A majority of the synthesized compounds were showing good antibacterial activity and from comparisons of the compounds, compound 3d has been determined to be the most active compound.
This study investigated the applicability of iron oxide (Fe2O3) nanoparticles for the removal of cadmium metal from sewage water by using batch scale experiments. The iron oxide nanoparticles of 27.7nm were synthesized using a biological method and characterized by Atomic Force Microscope (AFM). The Box-Wilson design was used to conduct experiments with three parameters such as pH (2-6), time of adsorption (6-120min) and adsorbent dosage (5-25mg/L). The best conditions occurred at pH: 5.5; contact time: 95.8 min; and iron oxide nanoparticle dosage: 20.77 mg/L for maximum cadmium removal of (96.9%).
In this work magnetite/geopolymer composite (MGP) were synthesized using a chemical co-precipitation technique. The synthesized materials were characterized using several techniques such as: “X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample-magnetometer (VSM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET) and Barrentt-Joyner-Halenda (BJH)” to determine the structure and morphology of the obtained material. The analysis indicated that metal oxide predominantly appeared at the shape of the spinel structure of magnetite, and that the presence of nano-magnetite had a substantial impact on the surface area and pore st
... Show MoreThe present work investigates the synthesis of silver nanoparticles (AgNPs) by a biological method using L.Rosa flower extract and silver nitrate as precursors. Optimum conditions of synthesis were studies, such as pH, temperature, concentration of extract, concentration of silver nitrate, and stability with time. Characterization of AgNPs was carried out using UV-visible Spectroscopy, Scanning Electron Microscopy, X-Ray Diffraction, Fourier Transform Infrared and Transmission Electron Microscopy. The biosynthesized AgNPs exhibited inhibitory effects on creatine kinase activity in the sera of patients with myocardial infarction, compared with control subjects. Thermodynamic and kinetic studies of c
... Show MoreA new synthesis of Schiff (K) 6 and Mannich bases (Q) 7 had formed compound (Q) 7 by reacting compound (K) with N-methylaniline at the presence of formalin 35% to given Mannich base (Q). Additionally, new complexes were formed by reacting Schiff base (K) with metal salts CuCl2·2H2O, PdCl2·2H2O, and PtCl6·6H2O by 2:1 of M:L ratio. New ligands and their complexes were characterized, exanimated, and confirmed through several techniques, including FTIR, UV-visible, 1H-NMR, 13C-NMR spectroscopy, CHN analysis, FAA, TG, molar conductivity, and magnetic susceptibility. These compounds and their complexes were screened against breast cancer cells. It was determined that several of these compounds had a significant anti-breast cancer effec
... Show MoreThe prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volu