Preferred Language
Articles
/
ijp-593
Studying of Plasma- Polymerized Pyrrole at Variable Gas Flow Rates Via Plasma Jet
...Show More Authors

     In this manuscript has investigated the synthesis of plasma-polymerized pyrrole (C4H5N) nano-particles prepared by the proposed atmospheric pressure nonequilibrium plasma jet through the parametric studies, particularly gas flow rate (0.5, 1 and 1.5 L/min). The plasma jet which used operates with alternating voltage 7.5kv and frequency 28kHz. The plasma-flow characteristics were investigated based on optical emission spectroscopy (OES). UV-Vis spectroscopy was used to characterize the  oxidization  state for polypyrrole. The major absorption appears around 464.1, 449.7 and 435.3  nm at the three flow rate of argon gas. The chemical composition and structural properties of the contained samples which synthesized at 0.5 L/min as a argon flow rate were analyzed by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD). SEM point to a uniform distribution of polypyrrole (PPY) nanoparticles matrix. XRD technique showed a semicrystalline pattern for PPY)thin film. It is expected, that the high-quality plasma polymer grown by atmospheric pressure plasma jet method contributes to serving as conducting materials.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Approximation Solution of a Nonlinear Parabolic Boundary Value Problem Via Galerkin Finite Elements Method with Crank-Nicolson
...Show More Authors

    This paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying Some Electrical Properties for ZnSe Films Prepared by Using the Thermal Evaporation Method in vacuum
...Show More Authors

  Thin films of zinc selenide ZnSe have been prepared by using thermal evaporation method in vacuum with different thickness (1000 – 4000) Ao and a deposited on glass substrate and studying some electrical properties including the determination of A.C conductivity and real, imaginary parts of dielectric constant and tangent of loss angle. The result shows that increasing value of A.C conductivity with increasing thickness and temperature, and increasing capacitance value with increasing the temperature and decrease with increasing frequency . Real and imaginary parts of dielectric constant and tangent of loss angle decrease with increasing frequency

View Publication Preview PDF
Publication Date
Wed Feb 20 2019
Journal Name
Political Sciences Journal
The Earidler the earliey shiaa polifical thought studying on the Al- sheikh Al-tossy political ideas
...Show More Authors

Abstract This research deals with the Al-Tossy contribution Islamic government and explain the directions of early shiaa political thoughts and knowing the opinions of Al-Shakh Al- Tossy in the Islamic Government

View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Analytical Solutions for Advanced Functional Differential Equations with Discontinuous Forcing Terms and Studying Their Dynamical Properties
...Show More Authors

This paper aims to find new analytical closed-forms to the  solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Study on Flow Characteristics and Heat Transfer Behavior Around Different Geometrical Corrugated Extended Surfaces
...Show More Authors

Abstract

The current study presents numerical investigation of the fluid (air) flow characteristics and convection heat transfer around different corrugated surfaces geometry in the low Reynolds number region (Re<1000). The geometries are included wavy, triangle, and rectangular. The effect of different geometry parameters such as aspect ratio and number of cycles per unit length on flow field characteristics and heat transfer was estimated and compared with each other. The computerized fluid dynamics package (ANSYS 14) is used to simulate the flow field and heat transfer, solve the governing equations, and extract the results. It is found that the turbulence intensity for rectangular extended surface was larg

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Applied And Computational Mathematics
Reliable computational methods for solving Jeffery-Hamel flow problem based on polynomial function spaces
...Show More Authors

In this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder

... Show More
View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Mon Dec 14 2020
Journal Name
Baghdad Science Journal
Smart Flow Steering Agent for End-to-End Delay Improvement in Software-Defined Networks
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Smart Flow Steering Agent for End-to-End Delay Improvement in Software-Defined Networks
...Show More Authors

To ensure fault tolerance and distributed management, distributed protocols are employed as one of the major architectural concepts underlying the Internet. However, inefficiency, instability and fragility could be potentially overcome with the help of the novel networking architecture called software-defined networking (SDN). The main property of this architecture is the separation of the control and data planes. To reduce congestion and thus improve latency and throughput, there must be homogeneous distribution of the traffic load over the different network paths. This paper presents a smart flow steering agent (SFSA) for data flow routing based on current network conditions. To enhance throughput and minimize latency, the SFSA distrib

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Oct 01 2014
Journal Name
Iosr Journal Of Mathematics
Flow through an Oscillating Rectangular Duct for Generalized Oldroyd-B Fluid with Fractional Derivatives
...Show More Authors

The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations

View Publication
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
A Real-Time Fuzzy Load Flow and Contingency Analysis Based on Gaussian Distribution System
...Show More Authors

Fuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed  method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi

... Show More
View Publication Preview PDF