A chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode plastic optical fiber with a core diameter of 980 μm, fluorinated polymer cladding of 20 μm and a numerical aperture of 0.51 was used.
In this work we fabrication holographic optical element diffraction grating thickness 40?m and mirror90?m by using dichromated gelatin,to perform that we have to use the Nd-yaG laser doubling frequency of wavelenght (532)nm and its powers of (80)mWatt.we have studyed the thickness and concentration dichromat effect in mirror reflaction ,effect of angle of reconstruction beam in band width and diffraction efficiency ,study effect gelatin hardener of the diffraction efficiency.
Bending effects on the transmission of optical signal are investigated on a single mode
optical fiber (SMOF) of 10 m length, core radius of 5 μm and optical refractive index difference
0.003. The bending radii (R) were between 0.08 and 0.0015 m. A great decrease in the amplitude is
shown for radii below 0.01 m. Sudden break down occurs for radii less than 0.0015 m. Birefringence
(B) is difficult to measure for long fibers. Meanwhile, B was found by comparing with calibrated
fiber of the same properties but of length of 0.075 m. The results show an increase in propagation
constant (Δβ) and the decrease in beat length (Lb), and show that bending decreases the critical radius
of curvature (Rc) related to B. The chang
Cadmium Oxide and Bi doped Cadmium Oxide thin films are prepared by using the chemical spray pyrolysis technique a glass substrate at a temperature of (400?C) with volumetric concentration (2,4)%. The thickness of all prepared films is about (400±20) nm. Transmittance and Absorbance spectra are recorded in the wave length ranged (400-800) nm. The nature of electronic transitions is determined, it is found out that these films have directly allowed transition with an optical energy gap of (2.37( eV for CdO and ) 2.59, 2.62) eV for (2% ,4%) Bi doped CdO respectively. The optical constants have been evaluated before and after doping.
In the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreEnvironmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possib
Pressure retarded osmosis (PRO) can be considered as one of the methods for utilizing osmotic power, which is a membrane-based technology. Mathematical modeling plays an essential part in the development and optimization of PRO energy-generating systems. In this research, a mathematical model was developed for the hollow fiber module to predict the power density and the permeate water flux theoretically. Sodium chloride solution was employed as the feed and draw solution. Different operating parameters, draw solution concentration (1 and 2 M), the flow rate of draw solution (2, 3, and 4 L/min), and applied hydraulic pressure difference (0 - 90 bar) was used to evaluate the performance of PRO process of a hollow fiber module. The eff
... Show MoreIn this study, the physical, and mechanical properties of low-cost and biocomposites were evaluated. The walnut shell and date palm frond fibers were thermally treated in an oven at a temperature of 70°C and then chemically treated with NaOH and distilled water solution, after these treatments, the biocomposite materials will be thermally treated again at 50°C. This procedure was performed for three types of biocomposite; Walnut shell Fiber Reinforced Polymer (WFRP), Date palm Fiber Reinforced Polymer (DFRP), and Hybrid Fiber Reinforced Polymer (HFRP), whereas the biocomposite sheets consisting of 30% biofibers and 70% unsaturated polyester, the mechanical test specimens were cut by a CNC machine according to ASTM standards. The e
... Show MoreIn this study, Epoxy Resin plates was prepared by mixing epoxy(A) and hardner(B)with ratio(A:B) (3:1) with different thickness (0.3-0.96)cm. The effect of thickness on optical properties have been studied (absorption ,transmission ,reflectance) also the optical constant were found like (absorption coefficient, extenuation coefficient and refraction index) for all of the prepared plates. The results have shown that by increasing the thickness of plates., the absorption intensity increase in which at plates thickness (0.3-0.96)cm the absorption intensity were(1.54-1.43) respectively, and since absorption peak for epoxy occur in ultraviolet region and exactly at wavelength(368)nm and energy gap(Eg=3.05 eV) thus their good transmittance in the
... Show More