A chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode plastic optical fiber with a core diameter of 980 μm, fluorinated polymer cladding of 20 μm and a numerical aperture of 0.51 was used.
Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreThe pumping station became widely used in many fields. Free surface vortices at intakes of pumps are not favorable. It may cause noise, excessive vibration, damage to the pumping structure, reduction in efficiency and flow for hydro-turbines, etc. One of the important problems encountered during the pump intake design is the depth of submergence and other design parameters to avoid strong free-surface vortices formation. This study aims to compute the critical submergence depth with some geometrical and hydraulic limitations by using Computational Fluid Dynamic (CFD) package. The mathematical model was validated with a laboratory model that had been conducted. The model of three intake pipes was investigated under five d
... Show MoreIn this work, monitoring of monthly variation (from May 2016 to October 2016) in the concentration of the metals (Co, Zn, Cd, Pb, Ni and Fe) from Al-Diwaniya city of Iraq. Investigation about the pollution with these metals was achieved from five selected sites locate in study area by flame atomic absorption spectroscopy. The results showed a wide variation in the levels of heavy metals from site to site and from month to month. A total of 180 surface soil samples were analyzed to detecting the pollution with selected samples. The resultsshowed that the highest concentration with Ni was 6.290 mg kg-1 while the lowest concentration detected with Ni was 0.080 mg kg-1. The results of pollution index (enrichment factor, contamination factor, po
... Show MoreCoagulation - flocculation are basic chemical engineering method in the treatment of metal-bearing industrial wastewater because it removes colloidal particles, some soluble compounds and very fine solid suspensions initially present in the wastewater by destabilization and formation of flocs. This research was conducted to study the feasibility of using natural coagulant such as okra and mallow and chemical coagulant such as alum for removing Cu and increase the removal efficiency and reduce the turbidity of treated water. Fourier transform Infrared (FTIR) was carried out for okra and mallow before and after coagulant to determine their type of functional groups. Carbonyl and hydroxyl functional groups on the surface of
... Show MoreRoughness length is one of the key variables in micrometeorological studies and environmental studies in regards to describing development of cities and urban environments. By utilizing the three dimensions ultrasonic anemometer installed at Mustansiriyah university, we determined the rate of the height of the rough elements (trees, buildings and bridges) to the surrounding area of the university for a radius of 1 km. After this, we calculated the zero-plane displacement length of eight sections and calculated the length of surface roughness. The results proved that the ranges of the variables above are ZH (9.2-13.8) m, Zd (4.3-8.1) m and Zo (0.24-0.48) m.
Background: This study was conducted to evaluate the surface roughness and dimensional accuracy of commercially obtainable alginate impression material in terms of imbibition after immersion in two different media. Materials and method: Two disinfecting agents, ethanol 70% and povidone-iodine 4%, were used to access the dimensional accuracy and surface roughness of alginate impression material. Weights of specimen discs of alginate impressions were measured before and immediately after immersion to gain a measure of imbibition. For surface roughness, disinfected specimens rectangle was examined before and after disinfection. Results: Minimal changes in weight were observed after disinfection, but a statistically non-significant differenc
... Show MoreAbstract: This paper presents the results of the structural and optical analysis of CdS thin films prepared by Spray of Pyrolysis (SP) technique. The deposited CdS films were characterized using spectrophotometer and the effect of Sulfide on the structural properties of the films was investigated through the analysis of X-ray diffraction pattern (XRD). The growth of crystal became stronger and more oriented as seen in the X-ray diffraction pattern. The studying of X-ray diffraction showed that; all the films have the hexagonal structure with lattice constants a=b=4.1358 and c=6.7156A°, the crystallite size of the CdS thin films increases and strain (ε) as well as the dislocation density (δ) decreases. Also, the optical properties of the
... Show MoreTrickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter disch
... Show MoreIn this work the production of activated carbon (AC) from Imperata is done by microwave assisted Potassium hydroxide (KOH) activation and using this activated carbon for the purpose of the uptake of amoxicillin (AMX) by adsorption process from aqueous solution. The effects for irradiation power (450-800W), irradiation time (6-12min) as well as impregnation ratio (0.5-1 g/g) on the AMX uptake and yield AMX uptake at an initial concentration of AMX (150 mg/g). The optimum conditions were 700 W irradiation power, 10 min time of irradiation, as well as 0.8 g/g impregnation ratio with 14.821% yield and 12.456 mg/g AMX uptake. Total volume of hole and the area of the surface (BET) are 0.3027 m³/g, and 552.7638 m²/g respectively. The properti
... Show More