Preferred Language
Articles
/
ijp-579
Enhancement of functionalized carbon nanotubes gas sensor by adding metal oxide nanoparticles

Functionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor performance, with high repeatability, complete recovery, and adequate response. A demonstration of the improvement in sensing of NO2 gas using CoO-functionalized nanotubes is provided.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Enhance the Properties of Lignosulfonate Mud by Adding Nanoparticles of Aluminum Oxide and Iron Oxide

Oil well drilling fluid rheology, lubricity, swelling, and fluid loss control are all critical factors to take into account before beginning the hole's construction. Drilling fluids can be made smoother, more cost-effective, and more efficient by investigating and evaluating the effects of various nanoparticles including aluminum oxide (Al2O3) and iron oxide (Fe2O3) on their performance. A drilling fluid's performance can be assessed by comparing its baseline characteristics to those of nanoparticle (NPs) enhanced fluids. It was found that the drilling mud contained NPs in concentrations of 0,0.25, 0. 5, 0.75 and 1 g. According to the results, when drilling fluid was used without NPs, the coeff

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Mechanical Engineering
Corrosion Resistance Enhancement for Low Carbon Steel by Gas Phase Coating

Corrosion Resistance Enhancement for low carbon steel is very important to extend its life service, the coating process is one of the methods which can using to achieve this, and it's the most important in surface treatments to improve the properties of metals and alloys surfaces such as corrosion resistance. In this work, low carbon steel was nitrided and coated with nano zinc using gas phase coating technical, to enhance the resistance of corrosion. The process included adding two layers. The first, a nitride layer, was added by precipitating nitrogen (N) gas, and the second, a zinc (Zn) layer, was added by precipitating Zn. The process of precipitating was carried out at different periods (5, 10, and 15 minutes). Scan electron mi

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Enhancement of Hydrothermally Co3O4 Thin Films as H2S Gas Sensor by Loading Yttrium Element

The gas sensing properties of Co3O4 and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4 and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4 possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.

The sen

... Show More
Scopus (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Characteristics of Zinc Oxide Film Prepared by Chemical Spray Deposition as a Gas Sensor

Zinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide

View Publication Preview PDF
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
The Power Enhancement of a Mini-Gas Turbine by Adding Ethanol to the Compressor Inlet Air

An experimental study is conducted on the utilization of the inlet ethanol injection technique in order to evaluate its impact on the performance of a two-shaft T200D mini-gas turbine engine. The maximum degradation recorded in power output was 32.8% at the climate temperature of 45oC. Nevertheless, at that temperature, adding ethanol with Eth/LPG ratio of 20% by volume brought an enhancement in power output of 19.2% compared to normal LPG run. SFC of the dual-fuel engine ranked a level of 22% higher than that with pure LPG consumption. The overall efficiency suffered a maximum reduction of 14.4% with Eth/LPG fuel ratio of 20%, but when the loading was raised beyond 70% of the engine full load; the efficiency of dual-fuel engi

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Laser
Experimental Study of Spatial Self-Phase Modulation (SSPM) Based on Laser Beam and Hybrid Functionalized Carbon Nanotubes/Silver Nanoparticles (F-Mwcnts/Ag-Nps) Acetone Suspensions

Focusing of Gaussian laser beam through nonlinear media can induce spatial self- phase modulation which forms a far field intensity pattern of concentric rings. The nonlinear refractive index change of material depends on the number of pattern rings. In this paper, a formation of tunable nonlinear refractive index change of hybrid functionalized carbon nanotubes/silver nanoparticles acetone suspensions (F-MWCNTs/Ag-NPs) at weight mixing ratio of 1:3 and volume fraction of 6x10-6 , 9x10-6 , and 18x10-6 using laser beam at wavelength of 473nm was investigated experimentally. The results showed that tunable nonlinear refractive indices were obtained and increasing of incident laser power density led to increase the nonlinear refractive inde

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Effect of Voltage on Gas Sensor Performance of Anodization Synthesized TiO2 Nanotubes Arrays

     Serious gases have been highly related to being prejudiced against human life within the environment. The evolution of a trustworthy gas sensor with an elevated response is of major importance for detecting various hazardous gases. Titanium dioxide (TiO2) nanotubes (TNTs) are favorable candidates with considerable potential and stellar performance in gas sensor applications. In this work, we have studied the effect of voltage on preparing TiO2 nanotubular arrays via the anodization technique for gas sensor applications. A simple electrochemical anodization approach was used to synthesize titanium dioxide nanotubes. Diverse techniques of characterization were used to evaluate TNTs. The results gained from fi

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
Synthesis and Fabrication of In2O3: CdO Nanoparticles for NO2 Gas Sensor

The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.

Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Numerical Study of Heat Transfer Enhancement for a Flat Plate Solar Collector by Adding Metal Foam Blocks

Numerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Chemical Methodologies
Scopus (7)
Scopus