In the current research, an eco-biosynthesis method for synthesizing silver nanoparticles (AgNPs) is reported using thymus vulgaris leaves (T. vulgaris) extracts. The optical and structural properties of the nanoparticles is determined using UV-visible, x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). In addition, the synthesis factors such as the temperature, the molar ratio of silver nitride and thymus vulgaris leaves extract have been investigated. The XRD pattern presented higher intensity for the five characteristic peaks of silver. FESEM images for same samples indicated that the particle size was distributed between 24-56 nm. In addition, it’s observed the formation of some aggregated Ag particles which is expected due to the precipitation effect. The mixtures were used to inhibit two kinds of bacteria which are Escherichia coli and Staphylococcus aureus by tested for antibacterial activity by agar well diffusion method.The results show the effectiveness of the synthesized AgNPs on inhabitation the growing up of the bacteria and their isolates. Where the AgNPs which synthesised with volumetric ratio of 1:10 show a higher inhibition efficiency for different concentration of the bacteria under the investigating.
Aqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.
Lactococcus lactis ssp. lactis isolated from raw milk was used for titanium dioxide (TiO2) nanoparticles biosynthesis. Biosynthesized TiO2 nanoparticles were characterized using UV-vis spectroscopy, Atomic Force Microscopy (AFM) (1.97 nm), X-ray diffraction (XRD) appa-ratus, Field Emission Scanning Electron Microscopy (FE-SEM), Energy dispersive X-ray anal-ysis (EDX) spectra and Fourier Transform Infrared Spectroscopy (FTIR). Result was 408.21 cm-1 that belong to anatase Titania. L. lactis ssp. Lactis isolates had the ability to synthesize TiO2 nanoparticles, the characterization results presented that the biosynthesized nanoparti-cles were at wavelength (344-347) nm; approving the formation of anatase phase of TiO2 NPs; spherical c
... Show MoreBackground: Colonization of soft denture liners by Candida albicans and other microorganisms continued to be a serious problem. The aim of this study was to evaluate the effect of incorporating silver nanoparticles into heat cured acrylic-based soft denture liner on the antifungal activity, and on water sorption, solubility, shear bond strength and color change of the soft lining material. Furthermore, evaluating the amount of silver released. Materials and methods: Silver nanoparticles were incorporated into soft denture liner in different percentages (0.05%, 0.1% and 0.2% by weight). Four hundred and twenty specimens were prepared and divided into five groups according to the test to be performed. The antifungal activity of the soft liner
... Show MoreA total of 200 samples (180 fecal materials and 20 organ samples) were collected from (5 different poultry farms, 10 local poultry shops, 5 houses poultry, 5 Eggs stores shops and 5hand slaughters centers) in Ibb city, Yemen, 2014. According to morphological, cultural, as well as biochemical characterization and serological tests, 59(29.5%) isolates were identified as Salmonella spp. and all Salmonella isolates were categorized by serotype, which comprised of, 37(62.71%) Salmonella Typhimurium serovar, 21(35.59%). Salmonella Enteritidis serovar and 1(1.69%) Salmonella Heidlberg serovar. Antibiotic sensitivity test was done for bacterial isolates and the results showed there were clear differences in antibiotic resistant. Antimicrobial
... Show MoreIn this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences
... Show More