The absorption spectrum for three types of metal ions in different concentrations has been studying experimentally and theoretically. The examination model is by Gaius model in order to find the best fitting curve and the equation controlled with this behavior. The three metal ions are (Copper chloride Cu+2, Iron chloride Fe+3, and Cobalt chloride Co+2) with different concentrations (10-4, 10-5, 10-6, 10-7) gm/m3. The spectroscopic study included UV-visible and fluorescence spectrum for all different concentrations sample. The results refer to several peaks that appear from the absorption spectrum in the high concentration of all metal ions solution. The multiple absorption peaks continued even at the lowest concentration in the iron ion solution. Fluorescence spectrum shows intensive stimulating of the radiation strength was perceived in the manifestation of Cu+2, Co+2 and Fe+3. From modeling investigation, there are converge between experimental and theoretical results of the fluorescence spectrum for metal ions. Furthermore, identity and convergence which defined as (r2), are on average (0.995).
Let f and g be a self – maps of a rational exterior space . A natural number m is called a minimal coincidence period of maps f and g if f^m and g^m have a coincidence point which is not coincidence by any earlier iterates. This paper presents a complete description of the set of algebraic coincidence periods for self - maps of a rational exterior space which has rank 2 .
The new bidentate Schiff base ligand namely [(E)-N1-(4-methoxy benzylidene) benzene-1, 2-diamine] was prepared from condensation of 4-Methoxy benzaldehyde with O-Phenylene diamine at 1:1 molar ratio in ethanol as a solvent in presence of drops of 48% HBr. The structure of ligand (L) was characterized by, FT-IR, U.V-Vis., 1H-, 13C- NMR spectrophotometer, melting point and elemental microanalysis C.H.N. Metal complexes of the ligand (L) in general molecular formula [M(L)3], where M= Mn(II), Co(II), Ni(II),Cu(II) and Hg(II); L=(C14H14N2O) in ratio (1:3)(Metal:Ligand) were synthesized and characterized by Atomic absorption, FT- IR, U.V-Vis. spectra, molar conductivity, chloride content, melting point and magnetic susceptibility from the above d
... Show MoreThis work reports the synthesis and characterization of some Co(111), Ni(11), Cu(11), Zn(l 1), Cd(1 1) and Hg(11) chelates of the new benzothia-zolylazo Ligand ( 5-Me-BTAC ) . The compounds were Characterized by IR , electronic spectroscopy, magnetic susceptibility ,elemental analysis and molar conductance measurements . The elemental analysis suggest the formula [ ML2 ] x.nH2O where x=Cl , n=1 for M= Co(111) and x=o , n=o for the remaining metal ions Electronic spectra and magnetic susceptibility data has supported the proposed octahedral geometry of Co(111) Ni(11) and Cu(1 I) Complexes. Conductivity measurements refer to nonionic structure of these Complexes except of Co(111) .
The polymeric complexes were obtained from the reaction of polymeric Schiff base.N-crotonyl-2-hydroxyphenylazomethine (HL), with divalent metals Pt (II), Cr (II). The modes of bonding and overall geometry of the complexes were determine through spectroscopic methods and compared with that reported from analogous monomeric ligand. This study revealed square planer geometry around the metal center for [Pt(L)Cl] and distorted octahedral geometry for Cr complex [Cr(L)Cl(H2O)2].
Serum adenosine deaminase (ADA) activity was determined in 30 blood sample of type 1 diabetic individuals 30 blood sample for the type 2 and 15 normal children as a control for type 1 15 normal adults as control for type 2. The mean ADA activity and specific activity in type 1 was (8.85± 5.55 U/mg of protein) which is compared with control (32.11± 1.54 U/mg of protein) while in type 2 was (48.46±11.91 U/mg of protein) is compared with control (5.18± 2.27 U/mg of protein ). We conclude that the altered blood level of ADA activity may help in predicting immunological dysfunction in diabetic individuals and also has a prognostic value.
Background: Hypothyroidism is the most abundant thyroid disorder worldwide. For decades, levothyroxine was the main effective pharmacological treatment for hypothyroidism. A variety of factors can influence levothyroxine dose, such as genetic variations. Studying the impact of genetic polymorphisms on the administration of medications was risen remarkably. Different genetic variations were investigated that might affect levothyroxine dose requirements, especially the deiodinase enzymes. Deiodinase type 2 genetic polymorphisms’ impact on levothyroxine dose was studied in different populations. Objective: To examine the association of the two single nucleotide polymorphism (SNP)s of deiodinase type 2 (rs225013 and rs225014) and le
... Show MoreBackground: Hypothyroidism is the most abundant thyroid disorder worldwide. For decades, levothyroxine was the main effective pharmacological treatment for hypothyroidism. A variety of factors can influence levothyroxine dose, such as genetic variations. Studying the impact of genetic polymorphisms on the administration of medications was risen remarkably. Different genetic variations were investigated that might affect levothyroxine dose requirements, especially the deiodinase enzymes. Deiodinase type 2 genetic polymorphisms’ impact on levothyroxine dose was studied in different populations.
Objective: To examine the association of the two single nucleotide polymorphism (SNP)s of deiodinase t
... Show MoreIn this paper, design computationl investigation in the field of charged-particle optics with the aid of numerical analysis methods under the absence of space charge effects. The work has been concentrated on the design of three-electrode einzel electrostatic lens accelerating and decelerating operated under different magnification conditions. The potential field distribution of lens has been represented by exponential function. The paraxial-ray equation has been solved for the proposed field to determine the trajectory of charged-particles traversing in the lens. From The axial potential distribution and its first and second derivatives, the optical propertie
... Show More