Preferred Language
Articles
/
ijp-53
Gas sensitivity properties of TiO2/Ag nanocomposite films prepared by pulse laser deposition
...Show More Authors

In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Square (RMS) value of thin films surface roughness increased with increasing of Ag contents, while the crystallite size was found to decrease with increase in different silver content. The sensitivity toward NO2 and NH3 gas has been measured under different ppm concentrations. TiO2 with noble metal has a sensitivity higher than pure TiO2 where as TiO2 with Ag metal deposited on glass substrate has maximum sensitivity to NO2 gas with a value of ~(50 %) at the nanocomposite 90%TiO2/10%Ag films with best operation temperature at 200 °C. In addition, noble metal like Ag to the titanium dioxide materials makes them sensitive to NO2 gas.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Studies In Systems, Decision And Control
Gap Analysis by Readiness Review Including Online Learning During COVID-19 Pandemic Period for Engineering Programs at the College of Engineering—University of Baghdad
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Study of electron energy distribution function and transport parameters for CF4 and Ar gases discharge by using the solution of Boltzmann equation-Part I
...Show More Authors

The Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases

View Publication Preview PDF
Publication Date
Wed Oct 26 2022
Journal Name
Aims Geosciences
Calculation and determination of radioactivity in the old district of Najaf by using the track detector CR-39 and geographical information systems (GIS) methods
...Show More Authors

This research aims to study the radiation concentration distribution of the old District of Najaf (Iraq), where 15 samples were taken from featured sites in the District, which represents archaeological, religious, and heritage sites. Track detector CR-39 was used to calculate the concentration of three different soil weights for each sample site after being exposed for a month. Geographical information systems (GIS) were used to distribute the radioactive concentration on the sites of the samples, where two interpolation methods, namely the inverse distance weight method (IDW) and the triangle irregular network method (NIT), to study the distribution of the radioactivity concentration. The study showed that the western part of the district

... Show More
View Publication Preview PDF
Crossref (2)
Clarivate Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Study of electron energy distribution function and transport parameters for CF4, Ar gases mixture discharge by using the solution of Boltzmann equation-Part II
...Show More Authors

The Boltzmann transport equation is solved by using two- terms approximation for pure gases and mixtures. This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
The electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Also, the mixtures are have different energy values depending on transport energy between electron and molecule through the collisions. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride i

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Solving Whitham-Broer-Kaup-Like Equations Numerically by using Hybrid Differential Transform Method and Finite Differences Method
...Show More Authors

This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.

View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Comparison between Horizontal and Vertical OFETs by Using Poly (3-Hexylthiophene) (P3HT) as an Active Semiconductor Layer
...Show More Authors

In this paper, a comparison between horizontal and vertical OFET of Poly (3-Hexylthiophene) (P3HT) as an active semiconductor layer (p-type) was studied by using two different gate insulators (ZrO2 and PVA). The electrical performance output (Id-Vd) and transfer (Id-Vg) characteristics were investigated using the gradual-channel approximation model. The device shows a typical output curve of a field-effect transistor (FET). The analysis of electrical characterization was performed in order to investigate the source-drain voltage (Vd) dependent current and the effects of gate dielectric on the electrical performance of the OFET. This work also considered the effects of the capacitance semiconductor on the performance OFETs. The value

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon Aug 05 2019
Journal Name
Gen. Lett. Math
Building a three-dimensional maritime transport model to find the best solution by using the heuristic algorithm
...Show More Authors

The aim of this research is to construct a three-dimensional maritime transport model to transport nonhomogeneous goods (k) and different transport modes (v) from their sources (i) to their destinations (j), while limiting the optimum quantities v ijk x to be transported at the lowest possible cost v ijk c and time v ijk t using the heuristic algorithm, Transport problems have been widely studied in computer science and process research and are one of the main problems of transport problems that are usually used to reduce the cost or times of transport of goods with a number of sources and a number of destinations and by means of transport to meet the conditions of supply and demand. Transport models are a key tool in logistics an

... Show More
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
MIXED CONVECTION PHENOMINA AFFECTED BY RADIATION IN A HORIZONTAL RECTANGULAR DUCT WITH COCENTRIC AND ECCENTRIC CIRCULAR CORE
...Show More Authors

The numerical investigation has been performed to study the radiation affected steady state laminar mixed convection induced by a hot inner varied positions circular core in a horizontal rectangular channel for a fully developed flow. To examine the effects of thermal radiation on thermo fluid dynamics behavior in the eccentric geometry channel, the generalized body fitted co-ordinate system is introduced while the finite difference method is used for solving the radiative transport equation. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function. After validating numerical results for the case without radiation, the detailed rad

... Show More
Crossref
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Composition operator induced by ?(z) = sz + t for which |s|?1, |t|<1 and |s|+|t|?1
...Show More Authors

We study in this paper the composition operator that is induced by ?(z) = sz + t. We give a characterization of the adjoint of composiotion operators generated by self-maps of the unit ball of form ?(z) = sz + t for which |s|?1, |t|<1 and |s|+|t|?1. In fact we prove that the adjoint is a product of toeplitz operators and composition operator. Also, we have studied the compactness of C? and give some other partial results.

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
MIXED CONVECTION PHENOMINA AFFECTED BY RADIATION IN A HORIZONTAL RECTANGULAR DUCT WITH COCENTRIC AND ECCENTRIC CIRCULAR CORE
...Show More Authors

The numerical investigation has been performed to study the radiation affected steady state laminar mixed convection induced by a hot inner varied positions circular core in a horizontal rectangular channel for a fully developed flow. To examine the effects of thermal radiation on thermo fluid dynamics behavior in the eccentric geometry channel, the generalized body fitted co-ordinate system is introduced while the finite difference method is used for solving the radiative transport equation. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function. After validating numerical results for the case without radiation, the detailed radiatio

... Show More
View Publication Preview PDF
Crossref