In this work, a magnetic switch was prepared using two typesof ferrofluid materials, the pure ferrofluid and ferrofluid doped with copper nanoparticles (10 nm). The critical magnetic field (Hc) and the state of magnetic saturation (Hs) were studied using three types of laser sources. The main parameters of the magnetic switch measured using pure ferrofluid and He-Ne Laser source were Hc(0.5 mv, 0.4 G), Hs (8.5 mv, 3 G). For the ferrofluid doped with copper nanoparticles were Hc (1 mv, 4 G), Hs (15 mv, 9.6 G), Using green semiconductor laser for the Pure ferrofluid were Hc (0.5 mv, 0.3 G) Hs (15 mv, 2.9 G). While the ferrofluid doped with copper nanoparticles were Hc (0.5 mv, 1 G), Hs (12 mv, 2.8 G) and by using the violet semiconductor laser the pure ferrofluid parameters were Hc(0.5 mv, 0.5 G), Hs (15 mv, 3.5 G) while the ferrofluid doped with coppernanoparticles are Hc (0.5 mv,1 G), Hs (15 mv, 3.3 G).
This study is dedicated to investigate the effects of initial laser intensity on the nonlinear optical properties of the laser dye DQOCI dissolved in methanol with a concentration of 10 -5 M and doped with PMMA film. The properties were studied by using open and closed aperture Z-scan technique, with different levels of initial intensity (I0), excited by continuous diode solid-state laser at a wavelength of 532 nm. Three lenses of different focal lengths were employed to change the radius of the Gaussian laser beam and then change the initial intensity. For I0= 6.83 and 27.304 kWatt/cm2, the Z-scan curves show a saturation of absorption (SA) known as the negative type of nonlinearity, in which
... Show MoreThe effect of solution heat treatment on the mechanical properties of Aluminum-Copper alloy. (2024-T3) by the rolling process is investigated. The solution heat treatment was implemented by heating the sheets to 480 C° and quenching them by water; then forming by rolling for many passes. And then natural aging is done for one month. Mechanical properties (tensile strength and hardness) are evaluated and the results are compared with the metal without treatment during the rolling process. ANSYS analysis is used to show the stresses distribution in the sheet during the rolling process. It has been seen that good mechanical properties are evident in the alloy without heat treatment due to the strain hardening and also the mechanical
... Show MoreLiquid – liquid interface reaction is one of the method to prepare nanoparticles, the preparation of nanoparticles depends on the super saturation of ions which can satisfy by layered two immiscible liquid (toluene and deionized (DI) water). The XRD-diffraction analysis give a mix structure from hexagonal and cubic and the average grain size is 7.73 nm using Sherrer relation and 9.54 nm using Williamson –Hall method. Transmission electron microscopy (TEM) Showed that the size of particles around 3 nm which is comparable with Bohr radius of CdS.
From UV-Visible spectrum analysis which use two model to estimate the radius of particles , the first one is effective mass approximate (EMA) model and the second one is tight binding model
In the present study, gold nanoparticles (AuNPs) were prepared using a simple low cost method synthesized cold plasma at different exposure time . The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AuNPs showed surface Plasmon resonance centered at 530, 540,and 533 nm. The XRD pattern showed that the strong intense peaks indicate crystalline nature and face centered cubic structure of gold nanoparticles for all samples were prepared .The average crystallite size of the AuNPs was 20-40 nm. Morphology of the AuNPs were carried out using FESEM. Observations show that the AuNPs synthesized we well dispersed with and particle sizes ranging from 9 to 31 nm with spherical shapes which are cle
... Show MoreGenerally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreCompounds were prepared from In2O3 doped SnO2 with different doping ratio by mixing and sintering at 1000oC. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3: SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass and p-type wafer Si(111) substrates at ambient temperature under vacuum of 10-3 bar thickness of ~100nm. X-ray diffraction and atomic force microscopy were used to examine the structural type, grain size and morphology of the prepared thin films. The results show the structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared a reduction of degree of crystallinity with the increase of doping ra
... Show MoreFilms of pure Poly (methyl methacrylate) PMMA and Iron chromate doped PMMA have been prepared using casting method. Transmission and absorptance spectra have been recorded in the wavelength range (300-900) nm, in order to calculate, single oscillator energy, dispersion energy proposed by Wemple - DiDomenico model, average oscillator strength, average oscillator wavelength. The refractive index data at infinite wavelength which was found to obey single oscillator model which was found to increase from 2.27-2.56 as the doping percentage increase. The decreasing in the optical energy gap which was found according to Tauc model were (3.74-3.63) eV , is in good agreement with that obtained by wimple-DiDomenico model. The inverse behavior comp
... Show MoreThe Corrosion protection effectiveness of Alimina(Al2O3,50nm)and Zinc oxide (ZnO,30nm) nanoparticales were studied on carbon steel and 316 stainless steel alloys in saline water (3.5%NaCl)at four temperatures: (20,30,40,50 OC)using three electrodes potentiostat. An average corrosion protection efficiencies of 65 %and 80% was achieved using Al2O3 NP's on carbon steel and stainless steel samples respectively, and it seems that no effect of rising temperature on the performances of the coated layers. While ZnO NP'S showed protection efficiency around 65% for the two alloys and little effected by temperature rising on the performanes of the coated layers. The morphology of the coated spesiemses was examined by Atomic force microscope.
Nano crystalline copper sulphide (Cu2S) thin films pure and 3% Bi doped were deposited on glass substrate by thermal evaporation technique of thickness 400±20 nm under a vacuum of ~ 2 × 10− 5 mbar to study the influence of annealing temperatures ( as-deposited, and 573) K on structural, surface morphology and optical properties of (Cu2S and Cu2S:3%Bi). (XRD) X-ray diffraction analysis showed (Cu2S and Cu2S:3%Bi) films before and after annealing are polycrystalline and hexagonal structure. AFM measurement approves that (Cu2S and Cu2S:3%Bi) films were Nano crystalline with grain size of (105.05-158.12) nm. The optical properties exhibits good optical absorption for Cu2S:3%Bi films. Decreased of optical band gap from 2.25 to 2 eV after dop
... Show More