The holmium plasma induced by a 1064-nmQ-switched Nd:YAG laser in air was investigated. This work was done theoretically and experimentally. Cowan code was used to get the emission spectra for different transition of the holmium target. In the experimental work, the evolution of the plasma was studied by acquiring spectral images at different laser pulse energies (600,650,700, 750, and 800 mJ). The repetition rates of (1Hz and 10Hz) in the UV region (200-400 nm). The results indicate that, the emission line intensities increase with increasing of the laser pulse energy and repetition rate. The strongest emission spectra appeared when the laser pulse energy is 800mJ and 10 Hz repetition rate at λ= 345.64nm, with the maximum intensity of 77000 counts.
Eight patients (3 male and 5 female) were treated in this study by Endovenous Laser Ablation (EVLA); Mathematical models are proposed to estimate the applied laser power and to assess the recovery period. The estimations of the applied laser power and recovery period in these models will be depended mainly on the diameter of the incompetent vein. In addition, Excel Program was utilized to find the proposed models. A 1470 nm diode laser up to 15W continuous power (CW) was used in the treatment of venous ulcers by EVLA procedure. Following up by duplex ultrasound was started in the 1st week after the first session until the vein is completely closed. The present study concluded that the relationship both between
... Show MoreThe 1500m race event is part of the athletics system, and the continuous competition to break records and achieve the highest levels of achievement in athletics events, especially the 1500m race event, is one of the topics that occupies the minds of many people interested in achieving digital development for this event, given the distance of the race and the time it takes to complete it. Because it is unique from other events, it has characteristics that distinguish it from other events, despite it being a middle-distance event, which shares with them that its speed is measured by the step, which consists of the length of the step and its frequency. Increasing any of these two factors while keeping one of them constant or increasing
... Show MoreAssessment of annual wind energy potential for three selected sites in Iraq has been analyzed in the present work. The wind velocities data from August 2014 to July 2015 were collected from the website of Weather Underground Organization (WUO) at stations elevation (35m, 32m, and 17m) for Baghdad, Najaf, and Kut Al-Hai respectively. Extrapolation of stations elevation and wind velocities was used to estimate wind velocities at (60m, 90m, and 120m). The objectives are to analyze the wind speed data and assess the wind energy potential for wind energy applications. Computer code for MATLAB software has been developed to solve the mathematical model. The results are presented as a monthly and annual average for wind velocities, standard deviat
... Show MoreThis study investigates the constructs and related theories that drive social capital in energy sector from the intention perspectives. This research uses theories of 'social support' and 'planned behaviour' alongside satisfaction and perceived value to propose a research model that drives social capital for energy sectors in Malaysia. The model reveals that the Theories of Planned Behaviour (TPB) and Social Support Theory (SST) alongside satisfaction and perceived value factors promote social capital development in energy sectors. Using PLS-SEM to analyse data gathered from energy sector employees in Malaysia, this research demonstrates that social capital is present when there is trust and loyalty among the users and positively effects en
... Show MoreAbstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.
Porous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.
The effect of 532nm Diode Pumped Solid State (DPSS) laser at power density of 5.234 W/cm2 on the growth of Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus was evaluated. These bacteria were isolated from samples taken from burn and infected wound areas of 55 patients admitted to the burn-wound unit in Al-Kindy teaching hospital in Baghdad during the period from October 2012 to March 2013. Each isolate was identified using microscopic, cultural and biochemical methods. A standard bacterial suspension was prepared for each isolate. Serial dilutions were then prepared and a dilution of 10-5 was selected. Irradiation experiments included four groups: (L-P-) bacterial suspension in saline solution, (L-P+) bacteria
... Show MoreWe have studied the effect of gamma irradiation on the optical transmission, absorbance, absorption coefficient, and Urbach energy for (PMMA- doped red methyl) film deposited by using solvent casting method .The optical transmission (T %) in the wavelength range (1901100 ) nm of films was measured , it was seen that all the parameters were affected by gamma irradiation.
Construction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.
Non thermal argon plasma needle at atmospheric pressure was generated. The experimental set up is based on very simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases, which flow at atmospheric pressure. The high d.c power supply is 7.5kV peak to peak, the frequency of the electrical field is 28kHz, and the plasma power less than 15W. The plasma is generated using only one electrode. In the present work the voltage and current discharge waveform are measured. Also the temperature of the working Ar gas at different gas flow and distances from the plasma electrode tip was recorded