توزيعات كثافة البروتون (PDD)، خلافاتهم وتناثر الإلكترون مرنة عوامل الشكل، F (ف) من ارض الدولة لبعض نوى قذيفة، مثل ( 104 المشتريات، 106 المشتريات، 108 المشتريات، 110 المشتريات) النظائر كانت محسوبة على أساس استخدام الاحتلال على المدارات السطحية للأغلفة المتآكلة من المستوى 2 p ، والأغلفة المتآكلة لمدة 2 ثانية ، والأغلفة المكتسبة لمدة ساعة ، ووظائف الموجة لمذبذب التوافق المحتمل مع معلمات الحجم المختارة لإعادة إنتاج نصف قطر شحنة التربيع المربع المتوسط الملاحظ لكل النوى التي يتم اعتبارها . لقد وجد أن إدخال معلمات إضافية ، وهما d 1 و d 2 والتي تعكس اختلاف أرقام احتلال الولايات عن التنبؤ بنموذج القشرة البسيطة SSM تؤدي إلى اتفاق ملحوظ بين النتائج المحسوبة والتجريبية لتوزيعات كثافة البروتون (PDD) في كامل نطاق (r).
The two-neutron halo-nuclei (17B, 11Li, 8He) was investigated using a two-body nucleon density distribution (2BNDD) with two frequency shell model (TFSM). The structure of valence two-neutron of 17B nucleus in a pure (1d5/2) state and in a pure (1p1/2) state for 11L and 8He nuclei. For our tested nucleus, an efficient (2BNDD's) operator for point nucleon system folded with two-body correlation operator's functions was used to investigate nuclear matter density distributions, root-mean square (rms) radii, and elastic electron scattering form factors. In the nucleon-nucleon forces the correlation took account of
... Show MoreThe effect of short range correlations on the inelastic longitudinal Coulomb form
factors for the lowest four excited 2+ states in 18O is analyzed. This effect (which
depends on the correlation parameter β) is inserted into the ground state charge
density distribution through the Jastrow type correlation function. The single particle
harmonic oscillator wave function is used with an oscillator size parameter b. The
parameters β and b are, considered as free parameters, adjusted for each excited state
separately so as to reproduce the experimental root mean square charge radius of
18O. The model space of 18O does not contribute to the transition charge density. As
a result, the inelastic Coulomb form factor of 18
The nucleon momentum distributions (NMD) and elastic electron scattering form factors of the ground state for some 1f-2p-shell nuclei, such as 58Ni, 60Ni, 62Ni, and 64Ni
isotopes have been calculated in the framework of the coherent fluctuation model (CFM) and expressed in terms of the weight function lf(x)l2 . The weight function (fluctuation function) has been related to the nucleon density distribution (NDD) of the nuclei and determined from the theory and experiment. The NDD is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of the l
Inelastic longitudinal electron scattering form factors for second
excited state C42 in 42Ti nucleus have been calculated using shell
model theory. Fp shell model space with configuration (1f7/2 2p3/2
1f5/2 2p1/2) has been adopted in order to distribute the valence
particles (protons and neutrons) outside an inert core 40Ca. Modern
model space effective interactions like FPD6 and GXPF1 have been
used to generate model space vectors and harmonic oscillator wave
function as a single particle wave function. Discarder space (core
orbits + higher orbits) has been included in (core polarization effect)
as a first order correction in microscopic theory to measure the
interested multipole form factors via the model
Inelastic longitudinal electron scattering form factors to 2+ and 4+ states in 65Cu nucleus has been calculated in the (2p3/2 1f 5/2 2p1/2) shell model space with the F5PVH effective interaction. The harmonic oscillator potential has been applied to calculate the wave functions of radial single-particle matrix elements. Two shell model codes, CP and NUSHELL are used to obtain results. The form factor of inelastic electron scattering to 1/21−, 1/22−, 3/22−, 3/23−, 5/21−, 5/22− and 7/2- states and finding the transition probabilities B (C2) (in units of e2 fm4) for these transitions and B (C4) (in units of e2 fm8) for the transition 7/2-, and comparing them with experimental data. Both the form factors and reduced transition pr
... Show MoreInelastic transverse magnetic dipole electron scattering form
factors in 48Ca have been investigated through nuclear shell model
in an excited state energy Ex= 10.23 MeV which is so called
"mystery case" with different optional choices like effective
interaction, restricted occupation and core polarization interaction.
40Ca as an inert core will be adopted and four orbits with eight
particles distributed mainly in 2p1f model space and in some extend
restricted to make sure about the major accuse about this type of
transition. Theoretical results have been constituted mainly with
experimental data and compared with some important theoretical
results of the same transition.
An effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu
An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards
... Show More