Spin coating technique used to prepare ZnPc, CdS and ZnPc/CdS blend thin films, these films annealed at 423K for 1h, 2h and 3h. Optical behavior of these films were examined using UV-Vis. and PL. The absorption spectrum of ZnPc shows a decreasing in absorption with the increase of annealing time while CdS spectrum give a clearly absorption peak at~510 nm. Energy gap of ZnPc increases from 1.41 to 1.52 eV by increasing the annealing time. Eg of CdS decrease by increasing annealing time, from 2.3 eV to 2.2 eV. The intensities of the peaks obtained from PL spectra were strongly dependent on annealing time and confirmed the results obtained from UV-Vis. D.C. conductivity measurement showed that all the thin films have two different activation energies in the temperature range 303–473K.
Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate
... Show MoreThe present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures
In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.
The alloys of CdSe1-xTex compound have been prepared from their elements successfully with high purity (99.9999%) which mixed stoichiometry ratio (x=0.0, 0.25, 0.5, 0.75 and 1.0) of (Cd, Se and Te) elements. Films of CdSe1-xTex alloys for different values of composition with thickness(0.5?m) have been prepared by thermal evaporation method at cleaned glass substrates which heated at (473K) under very low pressure (4×10-5mbar) at rate of deposition (3A?/s), after that thin films have been heat treated under low pressure (10-2mbar) at (523K) for two hours. The optical studies revealed that the absorption coefficient (?) is fairly high. It is found that the electronic transitions in the fundamental absorption edge tend to be allowed direct tr
... Show MoreSUMMARY. – Nanocrystalline thin fi lms of CdS are deposited on glass substrate by chemical bath deposited technique using polyvinyl alcohol (PVA) matrix solution. Crystallite size of the nanocrystalline films are determining from broading of X-ray diffraction lines and are found to vary from 0.33-0.52 nm, an increase of molarity the grain size decreases which turns increases the band gap. The band gap of nanocrystalline material is determined from the UV spectrograph. The absorption edge and absorption coefficient increases when the molarity increases and shifted towards the lower wavelength.
Cadmium sulphide CdS films with 200 nm have been prepared by thermal evaporation technique on glass substrate at substrate room temperature under vacuum of 10-5mbar.In this paper, the effect of Dielectric Barrier Discharge plasma on the optical properties of the CdS film. The prepared films were exposed to different time intervals (0, 3, 5, 8) min. For every sample, the Absorption A, absorption coefficient α , energy gap Eg ,extinction coefficient K and dielectric constant ε were studied. It is found that the energy gap were decreased with exposure time, and absorption , Absorption coefficient, refractive index, extinction coefficient, dielectric constant increased with time of exposure to the plasma. Our study conside
... Show MoreIn this paper, CdS/Si hetrojunction solar cell has been made by
Chemical Bath Deposition (CBD) of CdS thin film on to
monocrystalline silicon substrate. XRD measurements approved that
CdS film is changing the structure of CdS films from mixed
hexagonal and cubic phase to the hexagonal phase with [101]
predominant orientation. I-V characterization of the hetrojunction
shows good rectification, with high spectral responsivity of 0.41
A/W, quantum efficiency 90%,and specific detectivity 2.9*1014
cmHz1/2W -1 .
SiO2 nanostructure is synthesized by the Sol-Gel method and thin films are prepared using dip coating technique. The effect of laser densification is studied. X-ray Diffraction (XRD), Fourier Transformation Infrared Spectrometer (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) are used to analyze the samples. The results show that the silica nanoparticles are successfully synthesized by the sol-gel method after laser densification. XRD patterns show that cristobalite structure is observed from diode laser (410 nm) rather than diode laser (532 nm). FESEM images showed that the shape of nano silica is spherical and the particles size is in nano range (? 100 nm). It is concluded that the spherical nanocrystal structure of silica
... Show MoreThe Ge0.4Te0.6 alloy has been prepared. Thin films of Ge0.4Te0.6 has been prepared via a thermal evaporation method with 4000A thickness, and rate of deposition (4.2) A/sec at pressure 2x10-6 Torr. The A.C electrical conductivity of a-Ge0.4Te0.6 thin films has been studied as a function of frequency for annealing temperature within the range (423-623) K, the deduced exponent s values, was found to decrease with increasing of annealing temperature through the frequency of the range (102-106) Hz. It was found that, the correlated barrier hopping (CBH) is the dominant conduction mechanism. Values of dielectric constant ε1 and dielectric loss ε2 were found to decrease with frequency and increase with temperature. The activation energies have
... Show More