Preferred Language
Articles
/
ijp-485
Band Gap Characterization of Thermally Treated Hybrid Blend ZnPc/CdS Thin Films
...Show More Authors

Spin coating technique used to prepare ZnPc, CdS and ZnPc/CdS blend thin films, these films annealed at 423K for 1h, 2h and 3h. Optical behavior of these films were examined using UV-Vis. and PL. The absorption spectrum of ZnPc shows a decreasing in absorption with the increase of annealing time while CdS spectrum give a clearly absorption peak at~510 nm. Energy gap of ZnPc increases from 1.41 to 1.52 eV by increasing the annealing time. Eg of CdS decrease by increasing annealing time, from 2.3 eV to 2.2 eV. The intensities of the peaks obtained from PL spectra were strongly dependent on annealing time and confirmed the results obtained from UV-Vis. D.C. conductivity measurement showed that all the thin films have two different activation energies in the temperature range 303–473K.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 01 2009
Journal Name
Atti Della “fondazione Giorgio Ronchi”
Study of synthesis of nanocrystalline CdS thin film in PVA matrix by chemical bath deposition
...Show More Authors

SUMMARY. – Nanocrystalline thin fi lms of CdS are deposited on glass substrate by chemical bath deposited technique using polyvinyl alcohol (PVA) matrix solution. Crystallite size of the nanocrystalline films are determining from broading of X-ray diffraction lines and are found to vary from 0.33-0.52 nm, an increase of molarity the grain size decreases which turns increases the band gap. The band gap of nanocrystalline material is determined from the UV spectrograph. The absorption edge and absorption coefficient increases when the molarity increases and shifted towards the lower wavelength.

Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Effect of the Dielectric Barrier Discharge Plasma on the Optical Properties of CDS Thin Film
...Show More Authors

Cadmium sulphide CdS films with 200 nm have been prepared by thermal evaporation technique on glass substrate at substrate room temperature under vacuum of 10-5mbar.In this paper, the effect of Dielectric Barrier Discharge plasma on the optical properties of the CdS film. The prepared films were exposed to different time intervals (0, 3, 5, 8) min. For every sample, the Absorption A, absorption coefficient α , energy gap Eg ,extinction coefficient K and dielectric constant ε were studied. It is found that the energy gap were decreased with exposure time, and absorption , Absorption coefficient, refractive index, extinction coefficient,  dielectric constant increased with time of exposure to the plasma. Our study conside

... Show More
View Publication Preview PDF
Crossref (2)
Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Optical properties of ZnS and PEDOT thin films
...Show More Authors

Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that th

... Show More
Scopus (2)
Scopus
Publication Date
Sat Oct 01 2011
Journal Name
Iraqi Journal Of Physics
Some gas sensing properties of PbS thin films
...Show More Authors

In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.

View Publication Preview PDF
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Optical Investigations of CdSe1-x Tex Thin Films
...Show More Authors

The alloys of CdSe1-xTex compound have been prepared from their elements successfully with high purity (99.9999%) which mixed stoichiometry ratio (x=0.0, 0.25, 0.5, 0.75 and 1.0) of (Cd, Se and Te) elements. Films of CdSe1-xTex alloys for different values of composition with thickness(0.5?m) have been prepared by thermal evaporation method at cleaned glass substrates which heated at (473K) under very low pressure (4×10-5mbar) at rate of deposition (3A?/s), after that thin films have been heat treated under low pressure (10-2mbar) at (523K) for two hours. The optical studies revealed that the absorption coefficient (?) is fairly high. It is found that the electronic transitions in the fundamental absorption edge tend to be allowed direct tr

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Nov 01 2001
Journal Name
Renewable Energy
Optoelectronic properties of a-Si1−xGex:H thin films
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Optical properties of Ternary Se80-xTe20Gex Thin Films
...Show More Authors

The present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures

View Publication Preview PDF
Publication Date
Tue Jul 01 2014
Journal Name
Journal Of Nanotechnology & Advanced Materials
Structural and optical properties of SnS thin films
...Show More Authors

Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate

... Show More
Publication Date
Mon Jun 04 2018
Journal Name
Baghdad Science Journal
Laser Densification of Prepared SiO2 Sol-Gel Thin Films
...Show More Authors

SiO2 nanostructure is synthesized by the Sol-Gel method and thin films are prepared using dip coating technique. The effect of laser densification is studied. X-ray Diffraction (XRD), Fourier Transformation Infrared Spectrometer (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) are used to analyze the samples. The results show that the silica nanoparticles are successfully synthesized by the sol-gel method after laser densification. XRD patterns show that cristobalite structure is observed from diode laser (410 nm) rather than diode laser (532 nm). FESEM images showed that the shape of nano silica is spherical and the particles size is in nano range (? 100 nm). It is concluded that the spherical nanocrystal structure of silica

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Physical Properties of Cu Doped ZnO Nanocrystiline Thin Films
...Show More Authors

Thin films of ZnO nano crystalline doped with different concentrations (0, 6, 9, 12, and 18 )wt. % of copper were deposited on a glass substrate via pulsed laser deposition method (PLD). The properties of ZnO: Cu thin-nanofilms have been studied by absorbing UV-VIS, X-ray diffraction (XRD) and atomic force microscopes (AFM). UV-VIS spectroscopy was used to determine the type and value of the optical energy gap, while X-ray diffraction was used to examine the structure and determine the size of the crystals.  Atomic force microscopes were used to study the surface formation of precipitated materials. The UV-VIS spectroscopy was used to determine the type and value of the optical energy gap.

View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref