In this work gold nanoparticles (AuNPs), were prepared. Chemical method (Seed-Growth) was used to prepare it, then doping AuNPs with porous silicon (PS), used silicon wafer p-type to produce (PS) the processes doping achieved by electrochemical etching, the solution etching consist of HF, ethanol and AuNPs suspension, the result UV-visible absorption for AuNPs suspension showed the single peak located at ~(530 – 521) nm that related to SPR, the single peak is confirmed that the NPs present in the suspension is spherical shape and non-aggregated. X-ray diffraction analysis indicated growth AuNPs with PS. compare the PS layer without AuNPs and with AuNPs doped for electrical properties and sensitivity properties we found AuNPs:PS is more better than PS layer alone that refer to the AuNPs is improve properties PS.
A numerical study of the two-dimensional steady free convection flow in an inclined annulus between two concentric square cavities filled with a porous medium is presented in this paper for the case when the side outer walls are kept with differentially heated temperature while the horizontal outer walls and the inner walls are insulated. The heated wall is assumed to have spatial sinusoidal temperature variation about a constant mean value. The Darcy model is used and the fluid is assumed to be a standard Boussinesq fluid. For the Cartesian coordinate system, the governing equations which were used in stream function form are discretized by using the finite difference method with successive under – relaxation method (SUR) and are solv
... Show MoreMetal oxide nanoparticles, including iron oxide, are highly considered as one of the most important species of nanomaterials in a varied range of applications due to their optical, magnetic, and electrical properties. Iron oxides are common compounds, extensive in nature, and easily synthesized in the laboratory. In this paper, iron oxide nanoparticles were prepared by co-precipitation of (Fe+2) and (Fe+3) ions, using iron (II and III) sulfate as precursor material and NH4OH solution as solvent at 90°C. After the synthesis of iron oxide particles, it was characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These tests confirmed the obtaining o
... Show MoreIn this work, the possibility of a multiwavelength mode-locked fiber laser generation based on Four-Wave Mixing (FWM) induced by Fe2O3-SiO2 nanocomposite material is investigated for the first time. A multiwavelength mode-locked pulses fiber laser are generated from Ytterbium–doped fiber laser (YDFL) due to the combined action of high nonlinear absorption and high refractive coefficients of Fe2O3-SiO2 nanocomposite incorporated inside YDFL ring cavity. Up to more than 20 lasing lines in the 1040–1070 nm band with an equally lines separation of ~0.6 nm have been observed by just simple variation of passive modulation of the state of the polarization and the pump power altogether. Moreover, a passively mode-locked operation of YDFL laser
... Show MoreThe aim of this study is to formulate and evaluate ezetimibe nanoparticles using solvent antisolvent technology. Ezetimibe is a practically water-insoluble drug which acts as a lipid lowering drug that selectively inhibits the intestinal absorption of cholesterol and related phytosterols. Ezetimibe prepared as nano particles in order to improve its solubility and dissolution rate.
Thirty formulas were prepared and different stabilizing agents were used with different concentrations such as poly vinyl pyrrolidone (PVPK-30), poly vinyl alcohol (PVA), hydroxy propyl methyl cellulose E5 (HPMC), and poloxamer. The ratios of drug to stabilizers used to prepare the nanoparticles were 1: 2, 1:3 and 1:4.
The prepared nanoparticles
... Show MoreA hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show More