Fe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies size were observed also from the images the some particles have uneven shapes with agglomerate and the other have spherical shape. The exploding FeCoSb alloy wire plasma parameters is study by optical emission spectroscopy. The emission spectra of the plasma have been recorded and analyzed. The plasma electron temperature (Te), was determined by Boltzmann plot, and the electron density (ne), by Stark broadening for wire with diameter 0.3 mm and current of 75A in distilled water.
When a vehicle is left parked in the sun for an extended period, the gathered heat causes damage to several interiors within the cabin and causes discomfort for people and animals left inside the car. In the present work, the effect of the orientation of a parked white minibus on temperature distribution and cooling load calculation is studied experimentally in an open environment. Two different cases were studied facing south and facing east. For several hours, the temperature inside the car cabin had been monitored and measured at five separate locations. The cooling load calculations are carried out based on the experimental measurements. The results show that the overheating of parked cars always happens as a result
... Show MoreIn this paper, various aspects of smart grids are described. These aspects include the components of smart grids, the detailed functions of the smart energy meters within the smart grids and their effects on increasing the awareness, the advantages and disadvantages of smart grids, and the requirements of utilizing smart grids. To put some light on the difference between smart grids and traditional utility grids, some aspects of the traditional utility grids are covered in this paper as well.
We used to think of grammar as the bones of the language and vocabulary as the flesh to be added given that language consisted largely of life generated chunks of lexis. This “skeleton image” has been proverbially used to refer to that central feature of lexis named collocation- an idea that for the first 15 years of language study and analysis gave a moment‟s thought to English classroom material and methodology.
The work of John Sinclair, Dave Willis, Ron Carter, Michael McCarthy, Michael Lewis, and many others have all contributed to the way teachers today approach the area of lexis and what it means in the teaching/learning process of the language. This also seems to have incorporated lexical ideas into the teaching mechanis
Iraqi calcium bentonite was activated via acidification to study its structural and electrical properties. The elemental analysis of treated bentonite was determined by using X-ray fluorescence while the unit crystal structure was studied through X-ray diffraction showing disappearance of some fundamental reflections due to the treatment processes. The surface morphology, on the other hand, was studied thoroughly by Scanning Electron microscopy SEM and Atomic Force Microscope AFM showing some fragments of montmorillonite sheets. Furthermore, the electrical properties of bentonite were studied including: The dielectric permittivity, conductivity, tangent loss factor, and impedance with range of frequency (0.1-1000 KHz) at different temperatu
... Show MoreThis research explores the use of solid polymer electrolytes (SPEs) as a conductive medium for sodium ions in sodium‐ion batteries, presenting a possible alternative to traditional lithium‐ion battery technology. The researchers prepare SPEs with varying molecular weight ratios of polyacrylonitrile (PAN) and sodium tetrafluoroborate (NaBF4) using a solution casting method with dimethyl formamide as the solvent. Through optical absorbance measurements, we identified the PAN:NaBF4 (80:20) SPE composition as having the lowest energy band gap value (4.48 eV). This composition also exhibits high thermal stability based on thermogravimetric analysis results.
The splicing design of the existing road and the new road in the expansion project is an important part of the design work. Based on the analysis of the characteristics and the load effect of pavement structure on splicing, this paper points out that tensile crack or shear failure may occur at the splicing under the repeated action of the traffic load on the new/old pavement. According to the current structure design code of asphalt pavement in China, it is proposed that the horizontal tensile stress at the bottom of the splicing layer and the vertical shear stress at other layers of the splicing line should be controlled by adjusting the position and size of the excavated steps in addition to the conventional design ind
... Show MoreThe pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o . The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and r
... Show MorePure cadmium oxide films (CdO) and doped with zinc were prepared at different atomic ratios using a pulsed laser deposition technique using an ND-YAG laser from the targets of the pressed powder capsules. X-ray diffraction measurements showed a cubic-shaped of CdO structure. Another phase appeared, especially in high percentages of zinc, corresponding to the hexagonal structure of zinc. The degree of crystallinity, as well as the crystal size, increased with the increase of the zinc ratio for the used targets. The atomic force microscopy measurements showed that increasing the dopant percentage leads to an increase in the size of the nanoparticles, the particle size distribution was irregular and wide, in addition, to increase the surfac
... Show MoreThe data presented in this paper are related to the research article entitled “Novel dichloro(bis{2-[1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal(II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)” (Conradie et al., 2018) [1]. This paper presents characterization and structural data of the 2-(1-(4-methyl-phenyl)-1H-1,2,3-triazol-1-yl)pyridine ligand (L2 ) (Tawfiq et al., 2014) [2] as well as seven dichloro(bis{2- [1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal (II) coordination compounds, [M(L2 )2Cl2], all containing the same ligand but coordinated to different metal ions. The data illustrate the shift in IR, UV/VIS, and NMR (for diamagnetic complexes) peaks wh
... Show More