Fe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies size were observed also from the images the some particles have uneven shapes with agglomerate and the other have spherical shape. The exploding FeCoSb alloy wire plasma parameters is study by optical emission spectroscopy. The emission spectra of the plasma have been recorded and analyzed. The plasma electron temperature (Te), was determined by Boltzmann plot, and the electron density (ne), by Stark broadening for wire with diameter 0.3 mm and current of 75A in distilled water.
Abstract:
There is a close relationship between rigidity and distort structure of production and productivity and inflation rates. The effects of this relationship are distorted the contribution rate of the productive sectors and the disproportionate of exchange rate in foreign trade.
raising the general level of prices is one of the way that have been used by previous governments (inflationary financing or deficit financing) in order to speed up the process of capital formation, depending on the availability of economic resources idle.
The fabricating inflation for development does not represent a true understanding of the nature of the
... Show MoreThis research aims to modify the components of stainless steel alloy by the method of surface engineering through the single diffusion coating technique in order to obtain new alloys with high efficiency in resisting harsh environmental conditions. Steam a mixture of sodium chloride ( ) and sodium sulfate ( ) at a temperature of 900 and then compare it with the base alloy. The results showed that the alloys produced in this way are very efficient. The results showed that the aluminum coating showed high efficiency in resisting oxidation and provided better protection for a longer time compared to the uncoated alloy due to the oxide crust layer formed with high adhesion as well as the aluminum-rich phases, whether the phase
... Show MoreOrtho amino hydrazobenzene (L) has been prepared from the reaction of ortho amino phenyl thiol with phenyl hyrazan in mole ratio(1:1). It has been characterized by elemental analysis (C, H, N), IR, UV–Vis. The complexes of the bivalent ions (Co, Ni, Cu, Zn, Pd, Cd, Hg and Pb) and the trivalent (Cr) have been prepared and characterized too. The structural have been established by elemental analysis(C,H,N), IR , UV – Vis spectra , conductivity measurements , atomic absorption and magnetic susceptibility . The complexes showed characteristic behaviour of octahedral geometry around the metal ion and the( N,N) ligand coordinated in bidentate modeexcept with pd showed square planer. ? ,kf , ?max for the complexes were estimated too . ? for Co
... Show MoreOrtho amino hydrazobenzene (L) has been prepared from the reaction of ortho amino phenyl thiol with phenyl hyrazan in mole ratio(1:1). It has been characterized by elemental analysis (C, H, N), IR, UV–Vis. The complexes of the bivalent ions (Co, Ni, Cu, Zn, Pd, Cd, Hg and Pb) and the trivalent (Cr) have been prepared and characterized too. The structural have been established by elemental analysis(C,H,N), IR , UV – Vis spectra , conductivity measurements , atomic absorption and magnetic susceptibility . The complexes showed characteristic behaviour of octahedral geometry around the metal ion and the( N,N) ligand coordinated in bidentate modeexcept with pd showed square planer. ? ,kf , ?max for the complexes were estimated too .
... Show MoreCu-Al-Ni shape memory alloy specimens has been fabricated using powder metallurgy technique with tube furnace and vacuum sintering environment , three range of Nb powder weight percentage (0.3,0.6,0.9)% has been added. Micro hardness and sliding wear resist has been tested followed by X-ray diffraction, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX) for micro structure observation. The experimental test for the samples has showed that the increase of Nb powder weight percentage in the master alloy has a significant effect on increasing the hardness and decreasing the wear resist therefore it will enhance the mechanical properties for this alloy.
In this study, aluminum alloyAA6061-T6 was joined by a hot press process with three types of material; polyamide PA 6.6 (nylon), 1% carbon nanotube/PA6.6 and 30% carbon fiber/PA6.6 composites. Three parameters were considered in the hot pressing; temperature (180, 200 and 220°C), pressure (2, 3, 4, 5 and 6 bar) and time of pressing (1, 2, 3, 4 and 5 minutes for 200ºC, and 0.25, 0.5, 0.75, 1 and 1.25 minutes for220ºC). Applied pressure has great effect on shear strength of the joint, corresponding to bonding time and temperature. Maximum shear strength was 8.89MPa obtained for PA6.6 at bonding conditions of 4 bar, 220ºC and 0.75 minute. For 30% carbon fiber/PA6,6 shear recorded was
Electrochemical method was used to prepare carbon quantum dots (CQDs). Size of matter was nature when evaluate via X-ray diffraction (XRD). A distinct peak at 2θ equal to 31.6° and three other small peaks at 38.28°, 56.41° and 66.12° were observed. The measures of Fourier Transform Infrared Spectroscopy (FTIR) showed the bonds in the transmittance spectrum are manufactured with carbon nanostructures in view. The first peaks are the O–H stretching vibration bands at (3417 and 2922) cm−1, (C–O–H at 1400, and 1317) cm−1, (C–H), (C=C), (C–O–H), (C=O), and (C–O) bonds at 2850, 1668, 1101, and 1026 cm−1 sequentially. The transmission electron microscopy (TEM) results presented that the spherical CQDs are in shape and on a
... Show MoreAlloys of GaxSb1-x system with different Ga concentration (x=0.4, 0.5, 0.6) have been prepared in evacuated quartz tubes. The structure of the alloys were examined by X-ray diffraction analysis (XRD) and found to be polycrystalline of zincblend structure with strong crystalline orientation (220). Thin films of GaxSb1-x system of about 1.0 μm thickness have been deposited by flash evaporation method on glass substrate at 473K substrate temperature (Ts) and under pressure 10-6 mbar. This study concentrated on the effect of Ga concentration (x) on some physical properties of GaxSb1-x thin films such as structural and optical properties. The structure of prepared films for various values of x was polycrystalline. The X-ray diffraction analy
... Show MoreAbstract
The current study was carried out to reveal the plasma parameters such as ,the electron temperature ( ), electron density (ne) , plasma frequency (fp), Debye length ( ) , Debye number ( for CdS to employ the LIBS for the purpose of analyzing and determining spectral emission lines using . The results of electron temperature for CdS range (0.746-0.856) eV , the electron density(3.909-4.691)×1018 cm-3. Finally ,we discuss plasma parameters of CdS through nano second laser generated plasma .