Fe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies size were observed also from the images the some particles have uneven shapes with agglomerate and the other have spherical shape. The exploding FeCoSb alloy wire plasma parameters is study by optical emission spectroscopy. The emission spectra of the plasma have been recorded and analyzed. The plasma electron temperature (Te), was determined by Boltzmann plot, and the electron density (ne), by Stark broadening for wire with diameter 0.3 mm and current of 75A in distilled water.
Sb-dopedAgInSe2 (AIS: 3%Sb)thin films were synthesized by thermal evaporation with a vacuum of 7*10-6torr on glass with (400+20) nm thickness. X-ray diffraction was used to show that Sb atoms were successfully incorporated into the AgInSe2 lattice. Then the thin films are annealed in air at 573 K. XRD shows that thin films AIS pure, AIS: 3%Sb and annealing at 573 K are polycrystalline with tetragonal structure with preferential orientation (112).raise the crystallinity degree. The Absorption spectra revealed that the average Absorption was more than 60% at the wavelength range of 400–700 nm. UV/Visible measure shows the lowering in energy gap to 1.4 eV forAIS: 3%Sb at 573 Kt his energy gap making these samples suitable for p
... Show MoreSn effect on the phase transformation behavior, microstructure, and micro hardness of equiatomic Ni-Ti shape memory alloy was studied. NiTi and NiTiSn alloys were produced using vacuum induction melting process with alloys composition (50% at. Ni, 50% at.Ti) and (Ni 48% at., Ti 50% at., Sn 2% at.). The characteristics of both alloys were investigated by utilizing Differential Scanning Calorimetry, X- ray Diffraction Analysis, Scanning Electron Microscope, optical microscope and vicker's micro hardness test. The results showed that adding Sn element leads to decrease the phase transformation temperatures evidently. Both alloy samples contain NiTi matrix phase and Ti2Ni secondary phase, but the Ti2Ni phase content dec
... Show MoreAfter looking at the books of the first two grammarians, may God have mercy on them and reward them for what they have provided us with the rules of service to the Book of God and service to Arabic, we must highlight some of the things that the grammarians wanted to clarify, which did not come out of what they proved, but we are working on the statement of the issuance of the passport Provisions from the syntactic industry, and whether it is intended to prove a rule is not very added to the statement of speech, and we know that language, any language was the function of understanding; therefore they said: (speech is a useful word that indicates the benefit improves silence on them), and this concept between Grammatical controls and conte
... Show MoreThis study deals with interpretation of stratigraphic and structural of Khlesia area north-west Iraq in Nineveh province, near the Iraq- Syria border, by using 2D seismic data. Synthetic trace are prepared by using available data of the well (Kh-1) using Geoframe program to define and picking the reflectors on seismic section. These reflectors are: (Within Fatha and Kurra Chine reflectors) representing Middle Miocene and Late Triassic ages respectively. A listric growth normal fault is affecting the stratigraphic succession, and normal fault as a result of collision of Arabian plate with Eurasian plate. In addition, minor normal faults (Dendritic and Tension) are developed on the listric normal growth fault
... Show MoreA simple ,accurate and sensitive spectrophotometric method has been developed the determination of Cobalt(II) and Cupper (II) .The method is based on the chelation of Co(II) and Cu(II) ions with 4-(4´-pyrazolon azo) -2-Naphthol(APAN) in aqueous medium . The complexes have a maximum absorption at (513) and (506) nm and ? max 0.531×10 4 and 0.12×10 5 L.mol -1.cm -1 for Co(II) and Cu(II) respectively .The reagent and two complexes have been prepared in ethanolic solution.The stoichiometry of both complexes were found to be 1:2 (metal :legend) .The effects of various cations and anions on Co(II) and Cu(II) determination have been investigated .The stability constants and standard deviations for Co(II) and Cu(II) 0.291 x107 ,0.909X108 L.mol
... Show MoreThis study reports the fabrication of tin oxide (SnO2) thin films using pulsed laser deposition (PLD). The effect of 60Co (300, 900, and 1200 Gy) gamma radiation on the structural, morphological, and optical features is systematically demonstrated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and ultraviolet-visible light analysis (UV-Vis), respectively In XRD tests, the size of the crystallites decreased from 45.5 to 40.8 nm for the control samples and from 1200 Gy to 60Co for the irradiated samples. Using FESEM analysis, the particle diameter revealed a similar trend to that attained using XRD; in particular, the average diameters were 93.8 and
... Show MoreUnlike welding, soldering does not involve melting the work pieces. Soldering is a process in which two or more items are joined together by melting and putting a filler metal (solder) into the joint. Failure in the solder joint may make the system components lose their functions. Electrical wiring and electronic components are joined to devices and printed circuit boards using soldering. Soldering and brazing are both used in the assembly of musical instruments. Lead-tin alloy solder employed in the current investigation which has a diameter of 4 mm and a density of 11.0103 kg/m3 with continuous heat flux heating from the domain's left side and complete insulation on the other side. The melting of PCM was simulated using the ANSYS
... Show MoreAA3003-H14 aluminum alloy plates were welded by friction stir welding and TIG welding.
Fatigue properties of the welded joints were evaluated based on the superior tensile properties for
FSW at 1500 rpm rotational speed and 80 mm/min welding speed. However, there is not much
information available on effect of welding parameters with evolution of fatigue life of friction stir
welds. The present study experimentally analyzed fatigue properties for base, FSW, and TIG welds
of AA 3003-H14 aluminum alloy. Fatigue properties of FSW joints were slightly lower than the
base metal and higher than TIG welding.