This study investigates the ionic conduction dependence on the size of alkaline cations in gel polymer electrolytes based on double iodide can enhance by incorporating a salt having a bulky cation. Group of gel polymer electrolytes with polyethylene oxide (PEO) as a host matrix based on double salts potassium iodide (KI) and rubidium iodide (RbI) with different weight ratio prepared by using solution cast technique. The maximum value of conductivity reaches (6.03 10⁻3 at 293 K) S/cm for an electrolyte which content (KI 45%, RbI 5%) from binary salt. The ionic conductivity of for gel polymer electrolytes gradually increases by increasing temperature. The real dielectric constant results confirm that the dielectric behavior of the PEO material is a thermally activated process. FTIR results confirm that the shifting of peaks is another way to prove the interactions between PEO and binary salt ascribed to the formation of a transient cross-linking complex between the cations of the ionic liquids and the ether oxygen of the PEO.
Vibration is a source of energy that can be beneficial or harmful based on the application. Vibration can affect the function of any structure; however, Ceramic matrix composite (CMC) is one of these structures. Whereby less studies have been concentrated on study its function specially when electromagnetic wave (microwave) exposed on its surface to perform its designed function. To address this concept, SiC composite has been fabricated which is designed to have a transparent characteristics to microwave. External vibration had been applied on its surface to monitor how much influence could nanoscale amplitude vibration damage the microwave interaction. The source of vibration was applied from piezoelectric and the vibration was monitored
... Show MorePolyacrylamide Solutions of different concentrations (0.2, 0.4, 0.6, 0.8, 1.0 %) of Ag nanoparticles and ZnO nanoparticles were prepared, the viscosities and surface tension were measured for all solutions, where measurements indicated an increase in these properties with increased concentration, where the relative viscosity of polyacrylamide/zinc nanoparticles increased from 1.275 to 2.243, and the relative viscosity of polyacrylamide/silver nanoparticles increased from 1.178 to 1.934. Viscosity is significant parameters during electrospinning process. While the surface tension of the polyacrylamide/zinc nanoparticles has changed from 0.0343 Nm-1 to .0.0.0 Nm-1 and changed from .0.000Nm-1 to.0.0.0 Nm-1. Also the constants KH and KK were
... Show MoreIn this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap fo
... Show MoreThin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
Crystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O<
... Show MoreThin films of iridium doped indium oxide (In2O3:Eu)with different doping ratio(0,3,5,7,and 9%) are prepared on glass and single crystal silicon wafer substrates using spray pyrolysis method. The goal of this research is to investigate the effect of doping ratio on of the structural, optical and sensing properties . The structure of the prepared thin films was characterized at room temperature using X-ray diffraction. The results showed that all the undoped and doped (In2O3:Eu)samples are polycrystalline in structure and nearly stoichiometric. UV-visible spectrophotometer in the wavelength range (200-1100nm)was used to determine the optical energy gap and optical constants. The optical transmittance of 83% and the optical band gap of 5.2eV
... Show More