Based on nonlinear self- diffraction technique, the nonlinear optical properties of thin slice of matter can be obtained. Here, nonlinear characterization of nano-fluids consist of hybrid Single Wall Carbon Nanotubes and Silver Nanoparticles (SWCNTs/Ag-NPs) dispersed in acetone at volume fraction of 6x10-6, 9x10-6, 18x10-6 have been investigated experimentally. Therefore, CW DPSS laser at 473 nm focused into a quartz cuvette contains the previous nano-fluid was utilized. The number of diffraction ring patterns (N) has been counted using Charge - Coupled- Device (CCD) camera and Pc with a certain software, in order to find the maximum change of refractive index ( of fluids. Our result show that the fraction volume of 18x10-6 is more nonlinearity than others.
In this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4th-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.
Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in
... Show MoreAbstract
In this paper, the solutions to class of robust non-linear semi-explicit descriptor control systems with matching condition via optimal control strategy are obtained. The optimal control strategy has been introduced and developed in the sense that, the optimal control solution is robust solution to the given non-linear uncertain semi-explicit descriptor control system. The necessary mathematical proofs and remarks as well as discussions are also proposed. The present approach is step-by-step illustrated by application example to show its effectiveness a and efficiency to compensate the structure uncertainty in the given semi-explicit (descriptor) control
... Show MoreIn this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreIn this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.
Our aim in this work is to study the classical continuous boundary control vector problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector, by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations
... Show MoreIn this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.