In this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34.52) nm. The crystallite size increased due to the incensement of annealing temperature. FESEM analysis indicates that ZnO has hexagonal shape of cylindrical pores, plate-like nanocrystals and Nanorods. AFM analysis shows that the average surface roughness of ZnO Nanostructures increases from 3.96 to 19.1 nm with the increase of annealing temperature. The FTIR peaks indicate successful preparation of ZnO Nanostructures. The FTIR method was used to analyses the chemical bonds which conformed the present of the Zn-O group in the region between (400-500) cm-1. The UV-visible showed a red shift in the absorption spectra related to the shift in the energy gap related to increase in the particle size. the band gap energy has been calculated from the optical absorption spectra. The annealing process has been fond more effective on the value of energy gap. As the annealing temperature increases, the value of energy gap, increases as well; from (3.12to 3.22) eV. The prepared Nanostructure is used for antibacterial property. It shows strong antibacterial activity against S. aureus and P.aeuruginosa bacteria by the agar disc diffusion method. The white precipitate of ZnO NSs has superior antibacterial activity on gram-positive (S. aureus) than the gram-negative (P.aeuruginosa) bacteria.
The License Plate (LP), is a rectangular metal plate that contains numbers and letters. This plate is fixed onto the vehicle's body. It is used as a mean to identify the vehicle. The License Plate Recognition (LPR) system is a mean where a vehicle can be identified automatically using a computer system. The LPR has many applications, such as security applications for car tracking, or enforcing control on vehicles entering restricted areas (such as airports or governmental buildings). This paper is concerned with introducing a new method to recognize the Iraqi LPs using local vertical and horizontal projections, then testing its performance. The attained success rate reached 99.16%, with average recognition time around 0.012 second for re
... Show MoreThis paper proposes a completion that can allow fracturing four zones in a single trip in the well called “Y” (for confidential reasons) of the field named “X” (for confidential reasons). The steps to design a well completion for multiple fracturing are first to select the best completion method then the required equipment and the materials that it is made of. After that, the completion schematic must be drawn by using Power Draw in this case, and the summary installation procedures explained. The data used to design the completion are the well trajectory, the reservoir data (including temperature, pressure and fluid properties), the production and injection strategy. The results suggest that multi-stage hydraulic fracturing can
... Show MoreSteganography is defined as hiding confidential information in some other chosen media without leaving any clear evidence of changing the media's features. Most traditional hiding methods hide the message directly in the covered media like (text, image, audio, and video). Some hiding techniques leave a negative effect on the cover image, so sometimes the change in the carrier medium can be detected by human and machine. The purpose of suggesting hiding information is to make this change undetectable. The current research focuses on using complex method to prevent the detection of hiding information by human and machine based on spiral search method, the Structural Similarity Index Metrics measures are used to get the accuracy and quality
... Show MoreIn this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.
Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreIn the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn
... Show MoreWe propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show More