In this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34.52) nm. The crystallite size increased due to the incensement of annealing temperature. FESEM analysis indicates that ZnO has hexagonal shape of cylindrical pores, plate-like nanocrystals and Nanorods. AFM analysis shows that the average surface roughness of ZnO Nanostructures increases from 3.96 to 19.1 nm with the increase of annealing temperature. The FTIR peaks indicate successful preparation of ZnO Nanostructures. The FTIR method was used to analyses the chemical bonds which conformed the present of the Zn-O group in the region between (400-500) cm-1. The UV-visible showed a red shift in the absorption spectra related to the shift in the energy gap related to increase in the particle size. the band gap energy has been calculated from the optical absorption spectra. The annealing process has been fond more effective on the value of energy gap. As the annealing temperature increases, the value of energy gap, increases as well; from (3.12to 3.22) eV. The prepared Nanostructure is used for antibacterial property. It shows strong antibacterial activity against S. aureus and P.aeuruginosa bacteria by the agar disc diffusion method. The white precipitate of ZnO NSs has superior antibacterial activity on gram-positive (S. aureus) than the gram-negative (P.aeuruginosa) bacteria.
Nanosilica was extracted from rice husk, which was locally collected from the Iraqi mill at Al-Mishikhab district in Najaf Governorate, Iraq. The precipitation method was used to prepared Nanosilica powder from rice husk ash, after treating it thermally at 700°C, followed by dissolving the silica in the alkaline solution and getting a sodium silicate solution. Two samples of the final solution were collected to study the effect of filtration on the purity of the sample by X-ray fluorescence spectrometry (XRF). The result shows that the filtered samples have purity above while the non-filtered sample purity was around The structure analysis investigated by the X-ray diffraction (XRD), found that the Nanosilica powder has an amorphous
... Show MoreThe present investigation developed the ester prodrugs of Non-steroidal anti inflammatory drugs (NSAIDs), Mefenamic acid and Flurbiprofen by conjugating with the natural antioxidant, 4-methyl umbelliferone that resulted the formation of Mefenamic acid-umbelliferone ester prodrug and Flurbiprofen-umbelliferone ester prodrug .The principal objective this study is the synthesis of the ester prodrugs of NSAIDs with the enhanced therapeutic activity and minimized side effects. Prodrugs were synthesized by coupling method using N,N’- dicyclohexylcarbodiimide/4-dimethylaminopyrimidine, subjected to physical, chemical characterization, spectral characterization (IR, 1H NMR, 13C NMR and Mass spectra),hydro
... Show MoreSchiff base obtained from the reaction (Trimethoprim) with (sodiumpyruvate ) to produce the ligand [NaL], the reaction was carried out in methanol as a solvent under reflux. The prepared ligand [NaL] was characterized by FT-IR, UV-Vis spectroscopy, 1H,13C-NMR spectra, mass spectra, and melting point.A new mixed ligand complexes have been prepared between ( 8- hydroxyquinolone) and the ligand [NaL] withMn(II).Co(II),Ni(II),Cu(II), (Zn(II) ,(Cd(II)and Pd(II). All the complexes were characterized by spectroscopic methods (FT-IR, UV-Vis spectroscopy), chloride content and melting point ,molar conductance and magnetic susceptibility.These measure- ments showed octahedral geometry around(,Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+) ions and square pla
... Show MoreThe study involved preparing a new compound by combining between 2- hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries
... Show MoreThe study involved preparing a new compound by combining between 2-hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries.
... Show MoreThe ligand 2-[1-(1H-indol-3-yl)ethylimino) methyl]naphthalene-1-ol, derived from 1-hydroxy-2-naphthaldehyde and 2-(1H-indol-3-yl)ethylamine, was used to produce a new sequence of metal ions complexes. Thus ligand reactions with NiCl2.6H2O, PdCl2, FeCl3.6H2O and H2PtCl6.6H2O were sequentially made to collect mono-nuclear Ni(II), Pd(II), Fe (III), and Pt(IV). (IR or FTIR), Ultraviolet Reflective (UV–visible), Mass Spectra analysis, Bohr-magnetic (B.M.), metal content, chloride content and molar conductivity have been the defining features of the composites. The Fe(III) and Pt(IV) complexes have octahedral geometries, while the Ni(II) complex has tetra
... Show MoreTransition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6- (4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were as
... Show MoreA novel Schiff base ligand (DBC) synthesized from 4-chlorobenzoic acid, along with its Cu (II) and Co (II) complexes, was prepared and characterized using FT-IR, 1H and 13C-NMR, UV-Vis spectroscopy, as well as magnetic and conductivity measurements. Based on this, a tetrahedral structure of [M(DBC)Cl2] was proposed for the complexes. Antioxidant activity of the compounds was assessed and compared to ascorbic acid, revealing that the copper complex exhibited superior antioxidant properties compared to the cobalt complex and the ligand. Furthermore, the antibiofilm potential of the copper and cobalt complexes was assessed against five clinically relevant bacterial species (P.aeruginosa, E.coli, K.pneumoniae, S.aureus and S.typhi) usin
... Show MoreInternet of Things (IoT) is one of the newest matters in both industry and academia of the communication engineering world. On the other hand, wireless mesh networks, a network topology that has been debate for decades that haven’t been put into use in great scale, can make a transformation when it arises to the network in the IoT world nowadays. A Mesh IoT network is a local network architecture in which linked devices cooperate and route data using a specified protocol. Typically, IoT devices exchange sensor data by connecting to an IoT gateway. However, there are certain limitations if it involves to large number of sensors and the data that should be received is difficult to analyze. The aim of the work here is to implement a self-
... Show More