Preferred Language
Articles
/
ijp-43
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect on how the network perform when predicting cases of brain tumor, contrast accounted for 64.3 %, correlation accounted for 56.7 %, and entropy accounted for 54.8 %. All remaining characteristics accounted for 21.3-46.8 % of normalized importance. The output of the neural networks showed that sensitivity and specificity were scored remarkably high level of probability as it approached % 96.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Artificial Neural Network and Box- Jenkins Models to Predict the Number of Patients with Hypertension in Kalar
...Show More Authors

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
Using Neural Network with Speaker Applications
...Show More Authors

In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Hybrid Cipher System using Neural Network
...Show More Authors

The objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding le

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Heliyon
A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique
...Show More Authors

View Publication Preview PDF
Scopus (36)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network
...Show More Authors
Abstract<p>Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem</p> ... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Reducing False Notification in Identifying Malicious Application Programming Interface(API) to Detect Malwares Using Artificial Neural Network with Discriminant Analysis
...Show More Authors

 This paper argues the accuracy of behavior based detection systems, in which the Application Programming Interfaces (API) calls are analyzed and monitored. The work identifies the problems that affecting the accuracy of such detection models. The work was extracted (4744) API call through analyzing. The new approach provides an accurate discriminator and can reveal malicious API in PE malware up to 83.2%. Results of this work evaluated with Discriminant Analysis

View Publication Preview PDF
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization
...Show More Authors

In the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as  a particles with low-density and diameter (5 mm) in a (9.2 cm) inner diameter with height (200 cm) of vertical perspex column. The effectiveness of gas velocity Ug , liquid velocity UL, liquid viscosity μL, and particle density ρs on bed porosity BP and solid holdups εg were determined. The bed porosity increases with "increasing gas velocity", "liquid velocity", and "liquid viscosity". Solid holdup decreases with increasing gas, liquid

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Artificial Intelligence Based Deep Bayesian Neural Network (DBNN) Toward Personalized Treatment of Leukemia with Stem Cells
...Show More Authors

The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref