Preferred Language
Articles
/
ijp-43
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect on how the network perform when predicting cases of brain tumor, contrast accounted for 64.3 %, correlation accounted for 56.7 %, and entropy accounted for 54.8 %. All remaining characteristics accounted for 21.3-46.8 % of normalized importance. The output of the neural networks showed that sensitivity and specificity were scored remarkably high level of probability as it approached % 96.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 31 2019
Journal Name
Journal Of Engineering
WSN-WCCS: A Wireless Sensor Network Wavelet Curve Ciphering System
...Show More Authors

With wireless sensor network (WSN) wide applications in popularity, securing its data becomes a requirement. This can be accomplished by encrypting sensor node data. In this paper a new an efficient symmetric cryptographic algorithm is presented. This algorithm is called wireless sensor network wavelet curve ciphering system (WSN-WCCS).  The algorithm idea based on discrete wavelet transformation to generate keys for each node in WSN.  It implements on hierarchical clustering WSN using LEACH protocol. Python programming language version 2.7 was used to create the simulator of WSN framework and implement a WSN-WCCS algorithm. The simulation result of the proposed WSN-WCCS with other symmetric algorithms has show

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Mar 01 2014
Journal Name
International Journal Of Computer Science Engineering And Technology
Streaming video content over NGA (next generation access) network technology‏
...Show More Authors

An approach for hiding information has been proposed for securing information using Slanlet transform and the T-codes. Same as the wavelet transform the Slantlet transform is better in compression signal and good time localization signal compression than the conventional transforms like (DCT) discrete cosine transforms. The proposed method provides efficient security, because the original secret image is encrypted before embedding in order to build a robust system that is no attacker can defeat it. Some of the well known fidelity measures like (PSNR and AR) were used to measure the quality of the Steganography image and the image after extracted. The results show that the stego-image is closed related to the cover image, with (PSNR) Peak Si

... Show More
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Evaluating Roads Network Connectivity for Two Municipalities in Baghdad-Iraq
...Show More Authors

The road network serves as a hub for opportunities in production and consumption, resource extraction, and social cohabitation. In turn, this promotes a higher standard of living and the expansion of cities. This research explores the road network's spatial connectedness and its effects on travel and urban form in the Al-Kadhimiya and Al-Adhamiya municipalities. Satellite images and paper maps have been employed to extract information on the existing road network, including their kinds, conditions, density, and lengths. The spatial structure of the road network was then generated using the ArcGIS software environment. The road pattern connectivity was evaluated using graph theory indices. The study demands the abstraction and examin

... Show More
Crossref (2)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Evaluating Roads Network Connectivity for Two Municipalities in Baghdad-Iraq
...Show More Authors

The road network serves as a hub for opportunities in production and consumption, resource extraction, and social cohabitation. In turn, this promotes a higher standard of living and the expansion of cities. This research explores the road network's spatial connectedness and its effects on travel and urban form in the Al-Kadhimiya and Al-Adhamiya municipalities. Satellite images and paper maps have been employed to extract information on the existing road network, including their kinds, conditions, density, and lengths. The spatial structure of the road network was then generated using the ArcGIS software environment. The road pattern connectivity was evaluated using graph theory indices. The study demands the abstractio

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jul 01 2003
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
OCCURRENCE OF SOME FISH PARASITES IN AL-MADAEN DRAINAGE NETWORK, SOUTH OF BAGHDAD
...Show More Authors

Seven fish species were collected from the drainage network at Al-Madaen region, south of
Baghdad with the aid of a cast net during the period from March to August 1993. These fishes
were infected with 22 parasite species (seven sporozoans, three ciliated protozoans, seven
monogeneans, two nematodes, one acanthocephalan and two crustaceans) and one fungus
species. Among such parasites, Chloromyxum wardi and Cystidicola sp. are reported here for
the first time in Iraq. In addition, 11 new host records are added to the list of parasites of
fishes of Iraq.

View Publication Preview PDF
Publication Date
Thu May 17 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Swelling Behavior and Drug Release of Interpenetrating Network Composed of PVA and Chitosan
...Show More Authors

     PVA and chitosan biodegradable, non-toxic, biocompatible polymers convenient for use in drug release.

In this study polyvinyl alcohol (PVA) and chitosan (CS) hydrogels crosslinked with glutaraldehyde (GA) with different ratio morphology and structure characterization interpenetrating polymer network (IPN).They were investigated by Fourier transmission infrared spectroscopy (FTIR), scanning electron microscope (SEM), UV-Visible spectrophotometer,swelling of hydrogel and drug release were studied by changing crosslinking ratio and PH.

 

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization
...Show More Authors

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF
Publication Date
Wed Sep 23 2020
Journal Name
Artificial Intelligence Research
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe

... Show More
View Publication
Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Engineering And Sustainable Development
Improving Performance Classification in Wireless Body Area Sensor Networks Based on Machine Learning Techniques
...Show More Authors

Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (6)
Scopus Clarivate Crossref