Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect on how the network perform when predicting cases of brain tumor, contrast accounted for 64.3 %, correlation accounted for 56.7 %, and entropy accounted for 54.8 %. All remaining characteristics accounted for 21.3-46.8 % of normalized importance. The output of the neural networks showed that sensitivity and specificity were scored remarkably high level of probability as it approached % 96.
Clean water supply is one of the major factors contributing significantly to society’s socio-economic transformation by improving living standards, health, and increasing productivity. It is imperative to plan and construct appropriate water supply systems in modern society, which supply various segments of society with safe drinking water according to their requirements to ensure adequate and quality water supply. In the current study, here was an attempt to develop a model for geographic information systems to manage the assets of the water distribution networks in the Karrada region and to evaluate the network geometrically, and from the results of the engineering analysis of the
In recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show MoreThe synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.
A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets
... Show MoreInternal control system is a safety valve that preserves economic units assets and ensure the accuracy of financial data, as well as to obligation in the laws, regulations, administrative policies ,and improve the efficiency, effectiveness and economic of operation, so it has become imperative for these units attention to internal and developed control system The research problem in exposure the economic units when the exercise of their business to many of the risks to growth or hinder the achievement of its objectives and the risks (financial, operational, strategy, risk) and not it rely on risk Assessment according to modern scientific methods, as in Brown's risk Classification, Which led to the weakness of the internal control identif
... Show MoreThe tasseled cap transformation (TCT) is a useful tool for compressing spectral data into a few bands associated with physical scene characteristics with minimal information loss. TCT was originally evolved from the Landsat multi-spectral scanner (MSS) launched in 1972 and is widely adapted to modern sensors. In this study, we derived the TCT coefficients for operational land imager (OLI) sensor on-board Landsat-8 acquired at 28 Sep.2013. A newly classification method is presented; the method is based on dividing the scatterplot between the Greenness and the Brightness of TCT into regions corresponding to their reflectance values. The results from this paper suggest that the TCT coefficient derived from the OLI bands at September is the
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreThe increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning ha
... Show MoreAn oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show More