Polymer electrolytes systems compose of (PEO+KI+I2) and (PEO+RbI+I2) with different concentration, and a fixed amount of ethylene carbonate (EC) and propylene carbonate (PC) over temperatures range 293-343 K prepared by solution cast method. The conductivity and dielectric constant of the gel electrolytes were studied. The conductivity of the electrolytes Ss & Hs increases steadily with increased concentration of salt KI and RbI. The higher value of conductivity of (4.7 10-3 @ RT S.cm-1) for S5 electrolyte which contains (KI 50%). Whereas the maximum amount of conductivity of (5.4 10³ @RT S.cm⁻ˡ) for H5 electrolyte which contains (RbI 50%) the ionic conductivity depends on the ionic radii of the migrating species (cation K⁺, Rb⁺) effect on it. As the temperature increase, the number of free ions also increases, thus increases the diffusion of ions through their free volume of the polymer. The dielectric constant decrease at higher frequencies due to the inability of dipoles to align quickly with the change of applied field. The dielectric constant proportional positively with variation temperature causes an increase in the dielectric constant. The higher the value of (εr), the better is the electrical conductivity.
Background: With the increasing demands for adult orthodontics, a growing need arises to bond attachments to porcelain surfaces. Optimal adhesion to porcelain surface should allow orthodontic treatment without bond failure but not jeopardize porcelain integrity after debonding.The present study was carried out to compare the shear bond strength of metal bracket bonded to porcelain surface prepared by two mechanical treatments and by using different etching systems (Hydrofluoric acid 9% and acidulated phosphate fluoride 1.23%). Materials and Methods: The samples were comprised of 60 models (28mm *15mm*28mm) of metal fused to porcelain (feldspathic porcelain). They were divided as the following: group I (control): the porcelain surface left u
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More