The present work studies the mechanical properties of SiO2 μPs, and NPs in St/PVA blends. The samples were prepared by casting method as PVA, St/PVA blends at different concentrations (30, 40, 50, and 60 %). DSC and TGA tests were carried out to the samples evolved. The result showed a single glass transition temperature (Tg) for all St /PVA blends that was attributed to the good miscibility of the blends involved. It was found that (Tg) decrease with starch ratio increase. It was seen that (PVA) of (Tg=105 oC); The glass transition temperature which was decrease with starch ratio that was attributed to glass transition relaxation process due to micro-Brownian motion of the main chain back bond. The endothermic peak at 200 oC was attributed to melting point of (PVA). Thermal properties of PVA; and St /PVA blends at different concentration (30, 40, 50, and 60 %) were evaluated by thermo gravimetric analysis (TGA). The analyses were carried out from 20 to 600 oC at 10 oC)/min heating rate in air oxygen atmosphere. The weight loss stages depended on polymer system. The starch addition causing shifting in the second degradation temperature to the higher temperature; which result in overlapping between the two main degradation steps, these result was attributed to the St/ PVA blend compatibility. The mechanical properties results showed a decrease in ultimate strength with starch ratio increase. The ultimate strength of (PVA) was (47 MPa), whereas the ultimate strength of 60 %St/PVA was (11 MPa) and for 30 %St/PVA was the highest ultimate strength of blends involved (26 MPa). SiO2μPs (753.7 nm), and NPs (263.1 nm) were added at different concentrations (1.5, 2, and 2.5 %). 1.5% SiO2μPs, and NPs of the best ultimate strength (69 MPa), (86 MPa) respectively then it was decreased by SiO2μPs, and NPs increase. Optical microscope of the samples involved was investigated. It was concluded the prepared samples were suggested to be used as packaging materials for agriculture application and its ultimate strength could be controlled by SiO2μPs, and NPs addition.
Films of pure polystyrene (ps) and doped by bromothymol blue material with percentages(4%) prepared by using casting technique in room temperature , the absorption and transmission spectra has been recorded in the wavelength rang (200-900)nm and calculated refractive index , reflectivity, real and imaginary parts of dielectric constant and extinction coefficient . this study has been done by recording the absorption and transmission spectra by using spectrophotometer .
Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector-borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that ama
... Show MoreNitinol (NiTi) is used in many medical applications, including hard tissue replacements, because of its suitable characteristics, including a close elastic modulus to that of bones. Due to the great importance of the mechanical properties of this material in tissue replacements, this work aims to study the hysteresis response in an attempt to explore the ability of the material to remember its previous mechanical state in addition to its ability to withstand stress and to obtain the optimal dimensions and specifications for the manufacturer of NiTi actuators. Stress-strain examination is done in a computational way using a mutable Lagoudas MATLAB code for various coil radii, environment temperatures, and coil lengths. The computational m
... Show MoreThis study was undertaken to provide more insight on the optimum injection temperature used for the production of PE crates, thereby saving time and money, and improving part quality. The work included processing trails of HDPE crates in an injection
molding machine at five temperatures ranged from 220 to 300°C. Both Rheological and mechanical characterization was conducted in order to understand the effect of injection temperature on the properties of crates. Oven aging was also applied for (4 weeks) to evaluate the long-term thermal stability. The results revealed that producing the crates at a temperature range of (260-280 °C) gives the best rheological and mechanical result. The lowest drop in thermal stability has been observed
سمير خلف فياض * و محسن طالب د.نوال عزت عبد اللطيف*, مجلة الهندسة والتكنولوجيا, 2010
The problem of soil contamination is increased recently due to increasing the industrial wastes such as petroleum hydrocarbon, organic solvents, and heavy metals as well as maximizing the use of agricultural fertilizers. During this period, wide development of data collection methods, using remote sensing techniques in the field of soil and environment applications appear and state the suitable technique for remediation. This study deals with the application of remote sensing techniques in geoenvironmental engineering through a field spectral reflectance measurements at nine spots of naturally hydrocarbons contaminated soil in Al-Daura Refinery Company site which is located to the south west of Baghdad using radiometer device to get stan
... Show More
Background: Polymethylmethacrylate (PMMA) is the most ‎commonly used mâ€aterial in denture construction. This material is ‎far from ideal in fulfilling the‎ mechanical requirements, like low impact and transverse strength and poor thermal conductivity are present in this material. The purpose of this study was to study the effect of addition a composite which include 1%wt silanized silicone dioxide nano fillers (SiO2) and 1wt% oxygen plasma treated polypropylene fiber (PP) on some properties of heat cured acrylic resin denture base material (PMMA). Materials and methods: One hundâ€red (100) prepared specimens were divided into five groups according to the tests, each group consisted of 20 specimens and t
The agriculture around the world faced many difficulties and the important was to reduce inputs of chemical fertilizers and pesticides and increase the total yield specially with the continuous grow of populations numbers at the world expected to reach more than 9 billion by 2050. In other hand there are other problems which make the challenges bigger such as wars, biotic and abiotic stress, and diseases. The scientists tried to find solutions by using Nano-fertilization which consider a modern way to quickly grow up the yield and decrease use the chemicals. The use of nanotechnology may be destructive on human and the environment due to fast accumulation in the tissues of alive bodie
Choosing an appropriate impression material is a challenge for many dentists, yet an essential component to provide an excellent clinical outcome and improve productivity and profit. The purpose of present study was to compare wettability, tear strength and dimensional accuracy of three elastomeric impression materials, with the same consistencies (light-body). Three commercially available light body consistency and regular set 3M ESPE Express polyvinylsiloxane (PVS), 3M ESPE Permadyne polyether (PE), and Identium (ID), impression materials were comparedTear strength test, contact angle test and linear dimensional accuracy were evaluated for three elastic impression material. Among the three experimental groups PE impression materia
... Show More