A statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion contribution in imaginary potential has a parabolic change
about the Fermi surface energy while in the real potential it fall with
increasing the neutron energy. Good agreements have been achieved
with the available experimental data
The excellent specifications of electrodes coated with lead dioxide material make it of great importance in the industry. So it was suggested this study, which includes electrodeposition of lead dioxide on graphite substrate, knowing that the electrodeposition of lead dioxide on graphite studied earlier in different ways.
In this work the deposition process for lead dioxide conducted using electrolytic solution containing lead nitrate concentration 0.72 M with the addition of some other material to the solution, such as copper nitrate, nickel nitrate, sodium fluoride and cetyl trimethyl ammonium bromide, but only in very small concentrations. As for the operating conditions, the effect of change potential and temperature as well
... Show MorePalladium nanoparticles are produced by Polyol method. The characterization of the Pd nanoparticle has been conducted by various techniques such as SEM and AFM. The results of Pd powder showed that the particle size is directly proportional to the temperature and the reaction time. The optimum conditions for obtaining minimum nanoparticles size are 45 oC reaction temperature and 60 min reaction time and the smaller particle size achieved is equal to 25 nm. The optical limiting of smaller size nanoparticles has been studied. The palladium nanoparticles appear to be attractive candidates for optical limiting applications.
There is of great importance to know the values of the optical constants of materials due to their relationship with the optical properties and then with their practical applications. For this reason, it was proposed to study the optical constants of amorphous silicon nanostructures (quantum well, quantum wire, and quantum dot) because of their importance in the world of optical applications. In this study, it was adopted the Herve and Vandamme (HV) model of the refractive index because it was found that this model has very good optical properties for almost all semiconductors. Also, it was carried out by applying experimental results for the energy gaps of these three nanostructures, which makes the results of the theoretical calculations
... Show MoreOral tablets containing solubilized drug in the presence of appropriate excipients may give us an immediate release of the drug. Phospholipid solid dispersion (PSD) is a branch of solid dispersion in which phospholipid acts as a hydrophilic polymer in the presence of a suitable adsorbent to enhance the solubility of poorly soluble drugs. The anti-hyperlipidemic drug Atorvastatin (ATR) is an example of such drug, as it belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Phosphatidylcholine in combination with magnesium aluminum silicate as an adsorbent in a ratio of ATR: PC: MAS 1:3:4 was used to prepare ATR PSD by the solvent evaporation method, the
... Show MoreZinc sulfide(ZnS) thin films of different thickness were deposited on corning glass with the substrate kept at room temperature and high vacuum using thermal evaporation technique.the film properties investigated include their absorbance/transmittance/reflectance spectra,band gap,refractive index,extinction coefficient,complex dielectric constant and thickness.The films were found to exhibt high transmittance(59-98%) ,low absorbance and low reflectance in the visible/near infrared region up to 900 nm..However, the absorbance of the films were found to be high in the ultra violet region with peak around 360 nm.The thickness(using optical interference fringes method) of various films thichness(100,200,300,and 400) nm.The band gap meas
... Show MoreIn this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such<
The - M ultiple mixing ratios of -transitions from levels of 56Fe populated in 56 56 Fe n n Fe ( , ) reactions are calculated by using const. S.T.M. This method has been used in other works [3,7] but with pure transition or with transitions that can be considered as pure transitions، in our work we used This method for mixed - transitions in addition to pure - transitions. The experimental angular distribution coefficients a2 was used from previous works [1] in order to calculet - values. It is clear from the results that the - values are in good agreement or consistent, within associated errors, with those reported previously [1]. The discrepancies that occur are due to inaccuracies existing in the expe
... Show MoreIn the current research, multiple mixing ratios of gamma -transitions of the energy levels 60𝑁𝑑 142−150 isotopes populated in 𝑁𝑑(𝑛, 𝑛 ˊ 60 142−150 ) 60𝑁𝑑 142−150 interaction are calculated using the constant statistical tensor (CST) method. The results obtained are, in general, in good agreement or consistent, within the experimental error, with the results published in the previously researches. Existing discrepancies result from inaccuracies in the experimental results of previous works. The current results confirm the validity of the constant statistical tenser method of calculating the values of mixing ratios and its predictability of errors in experimental results
Grabisch and Labreuche have recently proposed a generalization of capacities, called the bi-capacities. Recently, a new approach for studying bi-capacities through introducing a notion of ternary-element sets proposed by the author. In this paper, we propose many results such as bipolar Mobius transform, importance index, and interaction index of bi-capacities based on our approach.