Aluminum plasma was generated by the irradiation of the target
with Nd: YAG laser operated at a wavelength of 1064 nm. The
effect of laser power density and the working pressure on spectral
lines generating by laser ablation, were detected by using optical
spectroscopy. The electron density was measured using the Stark
broadening of aluminum lines and the electron temperature by
Boltzmann plot method it is one of the methods that are used. The
electron temperature Te, electron density ne, plasma frequency
and Debye length increased with increasing the laser peak
power. The electron temperature decrease with increasing gas
pressure.
Background: There is a strong desire of adolescent to have a peer group and to be appreciated and also to become a member of this group which can affect one each other. There for; encourage, adapting,and imitating of friends and group consider as the main reasons behind starting of smoking among youngsters. Smoking habits in the family were found tobe acause of smoking pressure among adolescentas peer pressure. Smoking habit may be started before 18 years of age in most adult smokers.
Objectives: To study the effect of peer pressure and family smoking habiton the prevalence of smoking among secondary school students.
Type of the study: A cross
... Show MoreThe applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of power and duration time of pulsed Nd:YAG laser was studied on the heating of plasmas by inverse bremsstrahlung for several values for the electron density ratio. There results for these ca
... Show MoreAbstract: Under high-excitation irradiance conditions to induce fluorescence, the dependence of photobleaching of Coumarin 307 (C307) and acriflavine (ACF) laser dyes in liquid and solid phases have been studied. A cw LD laser source of 1 mW and 407 nm wavelength was used as an exciting source. For one hour exposure time, it was found that the solid dye samples suffer photobleaching more than the liquid dye samples. This is because in liquid solutions the dye molecules can circulate during the irradiation, while the photobleaching is a serious problem when the dye is incorporated into solid matrix and cannot circulate.
In this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
Carbon nanoparticles (CNPs) formed by one-step laser ablation in deionized water were carefully studied. Scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and UV–V spectroscopy were used to obtain morphological, chemical, and optical properties of CNPs. SEM outcomes established that the synthesized nanoparticles are semi-spherical with a wide particle size distribution. Raman investigation showed two typical and expected peaks ~ (1300 - 2700) cm−1, which are confirming to transverse and longitudinal modes of the carbon structure. The absorption spectra proved that the intensity of spectra increases as particle size and concentration increase.
The size and the concentration of the gold nanoparticles (GNPs)
synthesized in double distilled deionized water (DDDW) have been
found to be affected by the laser energy and the number of pulses.
The absorption spectra of the nanoparticles DDDW, and the
surface plasmon resonance (SPR) peaks were measured, and found to
be located between (509 and 524)nm using the UV- Vis
spectrophotometer. SPR calculations, images of transmission
electron microscope, and dynamic light scattering (DLS) method
were used to determine the size of GNPs, which found to be ranged
between (3.5 and 27) nm. The concentrations of GNPs in colloidal
solutions found to be ranged between (37 and 142) ppm, and
measured by atomic absorptio
Zinc Oxide nanoparticles were prepared using pulsed laser ablation process from a pure zinc metal placed inside a liquid environment. The latter is composed of acetyltrimethylammonium bromide (CTAB) of 10−3 molarity and distilled water. A Ti:Sapphire laser of 800 nm wavelength, 1 kHz pulse repetition rate, 130 fs pulse duration is used at three values of pulse energies of 0.05 mJ, 1.11 mJ and 1.15 mJ. The evaluation of the optical properties for the obtained suspension was applied through ultraviolet–visible absorption spectroscopy test (UV/VIS). The result showed peak wavelengths at 210 nm, 211 nm and 213 nm for the three used pulse energies 0.05 mJ, 1.11 mJ and 1.15 mJ respectively. This indicates a blue shift,
... Show MoreMost pathological effects of lead on the body are due to ability of lead to bind with important cellular molecules of various tissues and organs leading to formation abnormal molecules and thus to emergence of pathological conditions. To evaluation the risk to the health status of Iraqi workers who work in the batteries industry, expression of three types of calmodulin related genes were examined. Blood samples were collected from worker working in Iraqi industry of batteries (located in Al-Waziriya), then RNAs extraction were done thereby gene expression for Calcium/Calmodulin- dependent protein kinase2 (CaMKK2), C-X-C Chemokine receptor 4 (CXCR4) and mitogen activated protein kinase kinase 6 (MAP2K6) was done for each sample by using RT-q
... Show MoreAbstract
In this work, the plasma parameters (electron temperature (Te), electron density( ne), plasma frequency (fp) and Debye length (λD)) have been studied by using the spectrometer that collect the spectrum of Laser produce CdTe(X):S(1-X) plasma at X=0.5 with different energies. The results of electron temperature for CdTe range 0.758-0.768 eV also the electron density 3.648 1018 – 4.560 1018 cm-3 have been measured under vacuum reaching 2.5 10-2 mbar .Optical properties of CdTe:S were determined through the optical transmission method using ultraviolet visible spectrophotometer within the r
... Show More