In this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particle size.
In this study, titanium dioxide (TiO2) nanoparticles incorporated with cement were synthesis by a simple casting method as a function concentration of TiO2 (0.2, 0.4, 0.8, 1, and 2 wt%). The prepared samples were characterized using the technique of Field Emission Scanning Electron Microscope (FESEM) and UV-Visible spectrophotometer, which was used to measure the adsorption spectra. The observed photocatalytic efficiency of TiO2 nanoparticles (NP) incorporated with cement was investigated by decomposing the dye methyl blue (MB) solution under sunlight irradiation. According to the slope, the value of the k constant at the best sample is 0.8wt%, k=0.8265 min-1. FESEM image of the TiO2
... Show MoreCarbon Nanopowder was fabricated by arc discharge technique at deposition pressure of 10-5 mbar Argon gas on glass substrates. The prepared carbon nano- powder was collected from chamber and purified with nitric acid at 323K .The morphology and crystalline structure of the prepared powder was examined by X-Ray Diffraction (XRD), Atomic Force Microscope (AFM), and Scanning Electron Microscope (SEM). XRD spectrums showed that the powder exhibits amorphous structure and after purification, the powder showed hexagonal structure with a preferential orientation along(002) direction ,where AFM and SEM gave very compatible estimation on the grain size and shape of the nanopowder.
The finite element approach is used to solve a variety of difficulties, including well bore stability, fluid flow production and injection wells, mechanical issues and others. Geomechanics is a term that includes a number of important aspects in the petroleum industry, such as studying the changes that can be occur in oil reservoirs and geological structures, and providing a picture of oil well stability during drilling. The current review study concerned about the advancements in the application of the finite element method (FEM) in the geomechanical field over a course of century.
Firstly, the study presented the early advancements of this method by development the structural framework of stress, make numerical computer solution
... Show MoreHydatidosis is a sickness that affects human and farm animals. This disease is deemed as a public health problem in different regions of the world until nowadays. Surgical overlaps is the best way to treat the disease, while the risk of surgery lies in the possibility of cyst rupture and leakage of protoscolices and the recurrence of infection again, this prompted researchers to use scolicidal agents before surgery such as ethanol, plant extracts, to reduce parasite spread and recurrence of infection, recently researchers have been using nanoparticles as a scolicidal agent, like gold nanoparticles, silver nanoparticles, selenium nanoparticles, and others. This research aims to evaluate the fatal effect of zirconium oxide (ZrO2) nanoparticle
... Show MoreThis paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.
A nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption
... Show MoreIn the present work, a first-row divalent d-transition metal obtained from curcumin(Curc) and L-3,4-dihydroxyphenylalanin(L-dopa)have been synthesized which their complexes and characterized by C.H.N, conductance, spectral methods: FT-IR, Ultra–Visible. Magneto-chemical measurements, molar conductance ΛM (1×10−3 mol/L in DMSO):36- 0.84 ohm-1.cm2.mol-1 (non-electrolyte). The data shows that the complexes have the structure [M((II))-(Curc)-(L-dopa)] system. Electronic and magnetic data suggest an octahedral geometry for all complexes in which the (L-dopa) and curcumin act as bidentate ligands. Curcumin coordinated to the metal ions M (II) through the lone pair of electrons of oxygen in 2(C=O) groups. The (L-dopa) coordinated to M (II) a
... Show MoreIn the present work, a d.c. magnetron sputtering system was designed and fabricated. The chamber of this system was includes from two copper coaxial cylinders where the inner one used as a cathode (target) while the outer one used as the anode with Solenoid magnetic coil located on the outer cylinder (anode). The axial profile of magnetic field for various coil current (from 2A to 14 A) are shown. The plasma characteristics in the normal glow discharge region are diagnostics by the 2.2mm diameter Langmuir probe with different length along the cathode and located at different radial positions 1cm and 2cm from the cathode surface. The result of this work shows that, the electron energy distributions at different radial positions along the
... Show More