Lithium doped Nickel-Zinc ferrite material with chemical formula Ni0.9−2x Zn0.1LixFe2+xO4, where x is the ratio of lithium ions Li+ (x = 0, 0.01, 0.02, 0.03 and 0.04) prepared by using sol-gel auto combustion technique. X-ray diffraction results showed that the material have pure cubic spinal structure with space group Fd-3m. The experimental values of the lattice constant (aexp) were decreased from 8.39 to 8.35 nm with doped Li ions. It was found that the decreasing of the crystallite size with addition of lithium ions concentration. The radius of tetrahedral (rtet) and octahedral (roct) site were computed from cation distribution. SEM images have been taken to show the morphology of compound. The dielectric parameters [dissipation factor (Df), the dielectric constant (Ԑ') and a.c. conductivity (ζac)] of spinal ferrite nano-powder have been measured. The dielectric parameters as a function of concentration have been studied for ferrite synthesis. The saturation of magnetization (Ms), remiensis (Mr) and coersivity (Hc) were found from hysteresis loop. The Ms and Hc varied from 36.47 to 66.15 emu/gm and 103 to 133 Oe for ferrite synthesis, respectively.
The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue
... Show MoreThe molar ratio(x) of Li-Ni ferrites in the formula Li0.5-0.5xNixFe2.5-
0.5xO4 was varied in range 0.1-1.0 by hydrothermal process. The
XRD, SEM, and TEM tests were conducted to examine the samples
crystalline phase and to characterize the particles shapes and sizes.
The high purity spinel structure was obtained at med and high x
values. SEM and TEM images showed the existence of different
ferrite particles shapes like nanospheres and nanorods. The
maximum particle size is around (20nm). These size encourage
occurrence of super paramagnetic state. The reflection loss and
insertion loss as microwave losses of Li-Ni ferrite-epoxy composite
of 1mm thickness and mixing ratio 39.4 wt was investigated. The
mini
The aim of this paper is to demonstrate the effect of Na2[Fe(CN)5.NO].2H2O impurity (0.1 M) concentration on the dielectrical properties of poly (P-Aminobenzaldehyde) terminated by pheneylenediamine in the frequency and temperature ranges (1-100)KHz and (283-348) K respectively.These properties include dissipation factor, series and parallel resistance, series and parallel capacitance, real and imaginary part of the dielectric constant, a.c conductivity and impedance (real and imaginary) part, that have been deduced from equivalent circuit. The investigation shows that adding Na2[Fe(CN)5.NO].2H2O as additive to the polymer lead to increase of the dielectric constant with increasing temperature and it is decreasing with increasing the freq
... Show MoreUnsaturated polyester was used as a matrix which was filled with different percentages of cobalt ferrite using hand lay-up method. Cobalt ferrite was synthesized using solid state ceramic method with reagent of CoO and Fe2O3. Mechanical properties such tensile strength, Young's modulus and shore D hardness of the composite have been studied. All these properties have increased by 10% with increasing cobalt ferrite contents. Also the thermal properties such thermal conductivity and specific heat capacity are highly increased as the ferrite content increased, while the thermal diffusivity increased by 22 %. On the other hand dielectric strength of composite has been measured which increased by 50% by increasing the cobalt ferrite content.&
... Show Morethis work, a simple method was used to prepare the MnO2 nanoparticles. These nanoparticles then were characterized by several techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results showed that the diffraction peak of MnO2 nanoparticles was similar to that of standard data. The images of AFM and SEM indicated that the MnO2 nanorods were growing from the MnO2 nano spherical shape. PVA-pentaerythritol/MnO2 nanocomposite films were fabricated by evaporating casting method. The dielectric constant and loss tangent of P-Ery/MnO2 films were measured between 10 kHz and 1 MHz using LCR. As the content of MnO2 increased, the dielectric constant
... Show MoreHigh Alumina Glasses "Alumina Silicate Glasses" was prepared by utilizing powder technology technique. The starting materials are wasted soda-lime glass from an industrial site, Iraqi Duekhla raw kaolin and small amounts of potassium carbonates.
X-ray Diffraction and FTIR analysis show complete vitreous glasses are obtained. Increasing Alumina content plays an obvious role in improving physical and mechanical properties of the prepared high alumina glass. In addition, the increased alumina content enhanced the dielectric constant and reduced dielectric loss. These results may be interpreted as du
... Show MoreZnxNi1-x-yCuyFe2O4 spinel ferrite were prepared using solid state reaction method with (y=0.1, x=0.2, 0.3, 0.4, 0.5, 0.6 ) . X-ray diffraction with diffractometer CuKα analysis have been carried out and studied showing single phase spinel cubic with space group FDÍž 3m for all prepared samples . Lattice parameters and crystallite grain size and x-ray density(Ïx-ray) bulk density and porosity ratio's were calculated and showed good agreement with the international data reported in the scientific research's.
Cobalt substituted nickel copper ferrite samples with general formula Ni0.95-xCoxCu0.05Fe2O4, where (x= 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by solid-state reactions method at 1373 K for 4h. The samples prepared were examined by X-ray diffraction (XRD(, atomic force microscope (AFM), Fourier transform infra-red spectroscopy (FTIR) and Vickers hardness. X-ray diffraction patterns confirm the formation of a single phase of cubic spinel structure in all the prepared samples . XRD analysis showed that the increase in the cobalt concentration causes an increase in the lattice constant, bulk density (ρm) and the x-ray density (ρx), whereas porosity (p) and crystallite size (D) decrease. The Topography of the surface observed
... Show MoreThe Dielectric properties of EP/TiO2 and MgO nanocomposite at
a frequency range of (102-106 Hz) were studied. The composite were
prepared with the state volume ratio (0, 0.05, 0.1) for EP/TiO2 and
MgO respectively. The impedance, dielectric constant and dielectric
loss were found decrease with frequency increase.
Functionally graded materials (FGMs), with ceramic –ceramic constituents are fabricated using powder technology techniques. In this work three different sets of FGMs samples were designed in to 3 layers, 5 layers and 7 layers. The ceramic constituents were represented by hard ferrite (Barium ferrite) and soft ferrite (lithium ferrite). All samples sintered at constant temperature at 1100oC for 2 hrs. and characterized by FESEM. Some physical properties were measured for fabricated FGMs include apparent density, bulk density, porosity, shrinkage and hardness. The results indicated that the density increase with the increase the number of layer. Lateral shrinkage is one of the important parameter f
... Show More