The nuclear level density parameter in non Equi-Spacing Model (NON-ESM), Equi-Spacing Model (ESM) and the Backshifted Energy Dependent Fermi Gas model (BSEDFG) was determined for 106 nuclei; the results are tabulated and compared with the experimental works. It was found that there are no recognizable differences between our results and the experimental -values. The calculated level density parameters have been used in computing the state density as a function of the excitation energies for 58Fe and 246Cm nuclei. The results are in a good agreement with the experimental results from earlier published work.
Results of charge, neutron and matter densities and related form factors for one- proton halo nucleus 8B are presented using a two- frequency shell model approach. We choose a model space for the core of 7Be different from that of the extra one valence proton. One configuration is assumed for the outer proton to be in 1p1/2 - shell. The results of the matter density distributions are compared with those fitted to the experimental data. The calculated proton and matter density distributions of this exotic nucleus exhibit a long tail behavior, which is considered as a distinctive feature of halo nuclei. Elastic electron scattering form factors of this exotic nucleus are also studied. The effects of
... Show MoreThe nuclear structure of 40Ar, 112Cd, 133Cs, 151Eu, 154Sm, and 226Ra target nuclei used in nuclear battery technology was investigated. These nuclei are widely used for the radioisotope thermo-electric generator space studies and for betavoltaic battery microelectronic systems. For this purpose, some nuclear static properties were calculated. In particular, the single particle radial nuclear density distribution, the corresponding root mean square radii, neutron skin thicknesses, and binding energies were calculated within the framework of Hartree-Fock approximation with Skyrme interaction. The bremsstrahlung spectra produced by the absorption of beta particles throu
... Show MoreIn this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.
The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr
... Show MoreMaterials with external dimensions of one or more nanometers are referred to as nanomaterials. These structures result from a number of manufacturing processes. They are used in many industries, including pharmaceuticals, which is the most significant one. Numerous variables, including size, shape, surface morphology, crystallinity, solubility, etc., affect physical properties. While new physical and chemical processes are being created constantly, the biological method is the ideal strategy for synthesizing nanoparticles since it is straightforward, safe, and economical. Different kinds of nanoparticles can be metabolically synthesized by a wide variety of biological sources, including plants, bacteria, fungi, and yeast. There are
... Show MoreIn this paper the proton, neutron and matter density distributions and the corresponding root mean square (rms) radii of the ground states and the elastic magnetic electron scattering form factors and the magnetic dipole moments have been calculated for exotic nucleus of potassium isotopes K (A= 42, 43, 45, 47) based on the shell model using effective W0 interaction. The single-particle wave functions of harmonic-oscillator (HO) potential are used with the oscillator parameters b. According to this interaction, the valence nucleons are asummed to move in the d3f7 model space. The elastic magnetic electron scattering of the exotic nuclei 42K (J?T= 2- 2), 43K(J?T=3/2+ 5/2), 45K (J?T= 3/2+ 7/2) and 47K (J?T= 1/2+ 9/2) investigated t
... Show MoreThe energy level scheme of 188Os has been established on the basis of
y-y coincidence measurements. Ge (Li) and HPGe detectors were
employed to study the gamma spectra produced in the -decay of 188Re to
188Os. Fourteen new transitions and four new levels at 1660, 1871, 1948
188and 2034 keV are suggested. Relative intensities from singles
measurements, branching ratios and loft values were calculated and
multipolarities, spins and parities deduced
The particle-hole state densities have been calculated for 232Th in
the case of incident neutron with , 1 Z Z T T T T and 2 Z T T .
The finite well depth, surface effect, isospin and Pauli correction are
considered in the calculation of the state densities and then the
transition rates. The isospin correction function ( ) iso f has been
examined for different exciton configurations and at different
excitation energies up to 100 MeV. The present results are indicated
that the included corrections have more affected on transition rates
behavior for , , and above 30MeV excitation energy
Abstract- Plasma parameters in a planar dc-sputtering discharge in argon were measured by cylindrical electrostatic probe (Langmuir probe).Electron density, electron temperature, floating potential, and space potential were monitored as a function of working discharge pressure. Electrostatic probe and supporting circuit were described and used to plot the current – voltage characteristics. Plasma properties were inferred from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values are in the range of (10-16 -10-17) m-3 and (2.93 – 5.3) eV for the electron density and the electron temperature respectively.
In this work, the technique of attenuation of gamma ray to calculate the density of comet nucleus materials (C/2009 P1 (GARRADD) at different range of energy (0.2- 0.9 MeV). also, the single scattering model for gamma rays has been assumed that photons reaching the detector with scattered only once in the material. The program has been designed and written in FORTRAN language (77 – 90) to calculate the density for molecules using Monte Carlo method was used to simulate the scattering and absorption of photons in semi- infinite material. Gamma ray interacts with the matter by three mainly interactions: Photoelectric effect, Compton scattering and Pair production (electron and positron). On the 137Cs source energy (662 keV), Compton scat
... Show More