Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
Abstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.
Background: Laser is a novel physical therapy technique used to treat various conditions, including wound healing, inhibition of bacterial growth, and postoperative wounds. High-power pulsed alexandrite laser therapy is one of the most prevalent forms of laser therapy, which is a noninvasive method for treating various pathological conditions, thereby enhancing functional capacities and quality of life. It is a modern medical and physiotherapeutic technology. Generally, the Alexandrite laser emits infrared light with a wavelength of 755 nm, allowing it to propagate and penetrate tissues. Objective: This study focused on the application of a high-power pulsed alexandrite laser in vitro to evaluate the effect of a pulsed alexandrite l
... Show MorePVA:PEG/MnCl2 composites have been prepared by adding (MnCl2) to the mixture of the poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) with different weight percentages (0, 2, 4, 6, 8 and 10) wt.% by using casting method. The type of charge carriers, concentration (nH) and Hall mobility (μH) have been estimated from Hall measurements and show that the films of all concentration have a negative Hall coefficient. In D.C measurement increase temperature leads to decrease the electrical resistance. The D.C conductivity of the composites increases with the increasing of the concentration of additive particles and temperature. The activation energy decreases for all composites with increasing the concentration of the additive particles.
... Show MoreThe present work studies the mechanical properties of SiO2 μPs, and NPs in St/PVA blends. The samples were prepared by casting method as PVA, St/PVA blends at different concentrations (30, 40, 50, and 60 %). DSC and TGA tests were carried out to the samples evolved. The result showed a single glass transition temperature (Tg) for all St /PVA blends that was attributed to the good miscibility of the blends involved. It was found that (Tg) decrease with starch ratio increase. It was seen that (PVA) of (Tg=105 oC); The glass transition temperature which was decrease with starch ratio that was attributed to glass transition relaxation process due to micro-Brownian motion of the main chain back bond. The endothermic peak at 200 oC was attrib
... Show MoreAluminum plasma was generated by the irradiation of the target
with Nd: YAG laser operated at a wavelength of 1064 nm. The
effect of laser power density and the working pressure on spectral
lines generating by laser ablation, were detected by using optical
spectroscopy. The electron density was measured using the Stark
broadening of aluminum lines and the electron temperature by
Boltzmann plot method it is one of the methods that are used. The
electron temperature Te, electron density ne, plasma frequency
and Debye length increased with increasing the laser peak
power. The electron temperature decrease with increasing gas
pressure.
The reliability of optical sources is strongly dependent on the degradation and device characteristics are critically dependent on temperature. The degradation behaviours and reliability test results for the laser diode device (Sony-DL3148-025) will be presented .These devices are usually highly reliable. The degradation behaviour was exhibited in several aging tests, and device lifetimes were then estimated. The temperature dependence of 0.63?m lasers was studied. An aging test with constant light power operation of 5mW was carried out at 10, 25, 50 and 70°C for 100hours. Lifetimes of the optical sources have greatly improved, and these optical sources can be applied to various types of transmission systems. Within this degradation range,
... Show MoreSKF Sami I. Jafar, Mohammad J. Kadhim, Engineering and Technology Journal, 2018 - Cited by 4
Alloys of GaxSb1-x system with different Ga concentration (x=0.4, 0.5, 0.6) have been prepared in evacuated quartz tubes. The structure of the alloys were examined by X-ray diffraction analysis (XRD) and found to be polycrystalline of zincblend structure with strong crystalline orientation (220). Thin films of GaxSb1-x system of about 1.0 μm thickness have been deposited by flash evaporation method on glass substrate at 473K substrate temperature (Ts) and under pressure 10-6 mbar. This study concentrated on the effect of Ga concentration (x) on some physical properties of GaxSb1-x thin films such as structural and optical properties. The structure of prepared films for various values of x was polycrystalline. The X-ray diffraction analy
... Show MoreThe effects of BaCl2 dopant on the optical properties of poly (vinyl alcohol) have been investigated. Pure and BaCl2 doped PVA films were prepared using solvent casting method. These films were characterized using UV/VIS technique in order to estimate the kind of transition which was found to be indirect transition. The value of the optical energy gap was decrease with increasing dopant concentration.
Refractive index, extinction coefficient and Urbach tail have been also investigated; it was found that all the above parameters affects by doping.
Nanoparticles of copper sulfide have been prepared by simple reaction between using copper nitrate with different concentrations ratio 0.1, 0.3, and 0.5 mM, thiourea by a simple chemical route. The prepared Nano powders have been deposited onto glass substrates by casting method at 60°C. The structure of the product Nano- films has been studied by x-ray diffraction, where the patterns showed that all the samples have a hexagonal structure of covellite copper sulfide with the average crystalline sizes 14.07- 16.51 nm. The morphology has been examined by atomic force microscopy, and field emission scan electron microscopy. The AFM images showed particles with almost spherical and rod shapes with average diameter sizes of 49.11- 90.64 nm.
... Show More