Ferrite with the general formula CuLayFe2-yO4 (where y=0.02, 0.04, 0.06, 0.08 and 0.1), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns with the appearance of small amount of secondary phases. The lattice parameter results were 8.285-8.348 Å. X-ray density increased with La addition and showed values between 5.5826 – 5.7461gm/cm3. The Atomic Force Microscopy (AFM) showed that the average grain size was decreasing with the increase in La concentration. The Hall coefficient was found to be positive. It demonstrates that the majority of charge carriers of p-type, suggesting that the mechanism of conduction is predominantly caused by hopping of holes. The resistivity was noticed to increase with the increase in La substitution. The activation energy Eav decreased with the frequency increase. The AC conductivity was found to increase with the frequency and La addition. Dielectric constant was noticed to decrease with frequency and La addition. The dielectric loss factor decreased with La content because rare earths are known as low dielectric loss materials. |
ZnS:MnP2+P nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:MnP 2+P quantum dots were zinc acetate as zinc source, thioacetamide as a sulfur source, manganese chloride as manganese source (R & M Chemical) and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:MnP 2+P with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM). The composition of the samples is analysed by EDS. UV-Visible absorption spectroscopy analysis
... Show MoreExplain in this study, thickness has an inverse relationship with electrical resistivity and a linear relationship with Grain boundary scattering. According to the (Fuchs-Sondheier, Mayadas-Shatzkces) model, grain boundary scattering leads To an Increase in electrical Resistivity. The surface scattering Coefficient of Ag, which Fuchs-Sondheier and Mayadas-Shatzkces measured at , Ag's grain boundary reflection coefficient , which Mayadas-Shatzkces measured at , If the concentration of material has an effect on metal's electrical properties, According to this silver is a good electrical conductor and is used frequently in electrical and electronic circuits.
In this work, the electrical properties and optimum conditions of the plasma sputtering system have been studied. The electrical properties such as Paschen's curve, current-voltage, current pressure relations, the strength of magnetic field as a function of inter-electrode distance, the influence of gas working pressure and argon-oxygen ratio on the electrical characterization were studied to determine the basic optimum condition of the system operation. the discharge current as a function of discharge voltage showed high discharge current at 2.5 cm. These parameters represent the basic conditions to operate any plasma sputtering system which are the right behavior to build up and design the discharge an el
... Show MoreThis researchs the preparation of particulate polymer composites from Alkyd resin and Iraqi Burn Kaolin which were added as (20%,30%,40%,50%)and comparing with the polymer. It studied Thermal conductivity and Dielectric strength for both of the Alkyd resin and the Composite Material. The result showed an increase in Dielectric strength after adding the Iraqi Burn Kaolin , also the Thermal conductivity was increased by adding the Iraqi Burn Kaolin .
In this work, nanostructure porous silicon surface was prepared using electrochemical etching method under different current densities. I have studied the surface morphology and photoluminescence (PL) of three samples prepared at current densities 20, 30 and 40 mA/cm2 at fixed etching time 10 min. The atomic force microscopy (AFM) images of porous silicon showed that the nanocrystalline silicon pillars and voids over the entire surface has irregular and randomly distributed. Photoluminescence study showed that the emission peaks centered at approximately (600 – 612nm) corresponding energies (2.06 – 2.02eV).
While current-voltage characteristics shows, as the current density increase the current flow in the forward bias is decreasi
Thin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on value
... Show MoreThe electrical properties of Poly (ethylene oxide)-MnCl2 Composites were studied by using the impedance technique. The study was carried out as a function of frequency in the range from 10 Hz to 13 MHz and MnCl2 salt concentration ranged from 0% to 20% by weight. It was found that the dielectric constants and the dielectric loss of the prepared films increase with the increase of the MnCl2 concentration; The A.C. conductivity increases with the increase of the applied frequency, and the MnCl2 content in the composite membrane. Relaxation processes were observed to take place for composites which have a high salt concentration. The observed relaxation and polarization effects of the composite are mainly attributed to the dielectric
... Show MorePolymer blended electrolytes of various concentrations of undoped PAN/PMMA (80/20, 75/25, 70/30, 65/35 and 60/40 wt%) and doped with lithium salts (LiCl, Li2SO4H2O, LiNO3, Li2CO3) at 20% wt have been prepared by the solution casting method using dimethylformamide as a solvent. The electrical conductivity has been carried out using an LCR meter. The results showed that the highest ionic conductivity was 2.80x10-7 (Ω.cm)-1 and 1.05x10-1 (Ω.cm)-1 at 100 kHz frequency at room temperature for undoped (60% PAN + 40% PMMA) and (80% PAN + 20% PMMA) doped with 20%wt Li2CO3 composite blends, respect
... Show MoreThe structural, optical properties of copper oxide thin films ( CuO) thin films which have been prepared by thermal oxidation with exist air once and oxygen another have been studied. Structural analysis results of Cu thin films demonstrate that the single phase of Cu with high a crystalline structure with a preferred orientation (111). X-ray diffraction results confirm the formation of pure (CuO) phase in both methods of preparation. The optical constant are investigated and calculated such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-1100) nm.
The physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of conten
... Show More