In this research constructed N2 laser system by use developed method of electric discharge. In this method used four step of electric discharge by using four capacitors, three spark gaps, high tension power supply varying in range from 12kV to 24 kV and three resistors, this method called three stage blumlein circuit. The breakdown time delay of these parallel spark gaps cement strong ultraviolet preionization in the laser channel, thus the result of these amendments the laser output is many doubled and is more increasing than that obtained using the one and two stage blumlein circuits. This system has been designed and operated to give pulse laser with wavelength at 337.1 nm. This laser system can operate without mirrors and optical resonator. The best result of energy was about (20.2 mJ) at electrode separation (3.5 mm) with flow rate (13 L/min) and applied voltage (24 kV). With this conditions of electric discharges the pulse duration was (6.65 ns) then the peak power was (3.04 MW), the efficiency of convert the electric energy to optical energy was (0. 93%) and The divergence of laser beam at optimal condition was (0.348 mrad). The results of fabricated system indicate the output characteristics can be significantly improved by improving the discharge characteristics.
In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
The prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
In this paper Zener diode was manufactured using ZnO-CuO-ZnO/Si heterojunction structure that used laser induced plasma technique to prepare the nanofilms. Six samples were prepared with a different number of laser pulses, started with 200 to 600 pulses on ZnO tablet with fixed the number of laser pulses on CuO tablet at 300 pulses. The pulse energy of laser deposited was 900mJ using ZnO tablet and 600mJ using CuO tablet. All prepared films shown good behavior as Zener diode when using porous silicon as substrate.
Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreVideo steganography has become a popular option for protecting secret data from hacking attempts and common attacks on the internet. However, when the whole video frame(s) are used to embed secret data, this may lead to visual distortion. This work is an attempt to hide sensitive secret image inside the moving objects in a video based on separating the object from the background of the frame, selecting and arranging them according to object's size for embedding secret image. The XOR technique is used with reverse bits between the secret image bits and the detected moving object bits for embedding. The proposed method provides more security and imperceptibility as the moving objects are used for embedding, so it is difficult to notice the
... Show MoreThis study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percen
... Show MoreThe aim of the study was to evaluate the efficacy of diode laser (λ=940 nm) in the management of gingival hyperpigmentation compared to the conventional bur method. Materials and methods: Eighteen patients with gingival hyperpigmentation were selected for the study with an age between 12-37 years old. The site of treatment was the upper gingiva using diode laser for the right half and the conventional method for the left half. All patients were re-evaluated after the following intervals: 3 days, 7 days, 1 month and 6 months post-operation. Pain and functions were re-evaluated in each visit for a period of 1 day, 3 days and 1 week post-operation. Laser parameters included 1.5 W in continuous mode with an initiated tip (400 μm) placed in
... Show More