In this research constructed N2 laser system by use developed method of electric discharge. In this method used four step of electric discharge by using four capacitors, three spark gaps, high tension power supply varying in range from 12kV to 24 kV and three resistors, this method called three stage blumlein circuit. The breakdown time delay of these parallel spark gaps cement strong ultraviolet preionization in the laser channel, thus the result of these amendments the laser output is many doubled and is more increasing than that obtained using the one and two stage blumlein circuits. This system has been designed and operated to give pulse laser with wavelength at 337.1 nm. This laser system can operate without mirrors and optical resonator. The best result of energy was about (20.2 mJ) at electrode separation (3.5 mm) with flow rate (13 L/min) and applied voltage (24 kV). With this conditions of electric discharges the pulse duration was (6.65 ns) then the peak power was (3.04 MW), the efficiency of convert the electric energy to optical energy was (0. 93%) and The divergence of laser beam at optimal condition was (0.348 mrad). The results of fabricated system indicate the output characteristics can be significantly improved by improving the discharge characteristics.
In this work, A new strategy for enhancing the efficiency of dye sensitized solar cells (DSSC) by doping foreign ion and co- doping TiO2 / Fe and Cu (38 nm ) was prepared by sol-gel method and successfully used as a photoanode for (DSSC). The samples were characterized by using X-ray diffraction ( XRD) is used to calculate grain size, before and after Fe, Cu- doping and co- doping. Glass coating process with a thin layer on (Fluorine doped tin oxide) FTO glass by using doctor Blade technique .The optimum thickness utilized for TiO2 paste is (15μm) on a conductive glass. The best experimental results for doping and co- doping TiO2 with additive Copper (II) nitrate Cu (NO3)2 as improved it was VOC=0.6 V, ISC=1.92 mA, Imax=1.8 mA and Vmax=
... Show MoreThe present paper concern with minimax shrinkage estimator technique in order to estimate Burr X distribution shape parameter, when prior information about the real shape obtainable as original estimate while known scale parameter.
Derivation for Bias Ratio, Mean squared error and the Relative Efficiency equations.
Numerical results and conclusions for the expressions mentioned above were displayed. Comparisons for proposed estimator with most recent works were made.
The water supply network inside the building is of high importance due to direct contact with the user that must be optimally designed to meet the water needs of users. This work aims to review previous research and scientific theories that deal with the design of water networks inside buildings, from calculating the amount of consumption and the optimal distribution of the network, as well as ways to rationalize the use of water by the consumer. The process of pumping domestic water starts from water treatment plants to be fed to the public distribution networks, then reaching a distribution network inside the building till it is provided to the user. The design of the water supply network inside the building is
... Show MoreTarget tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocr
... Show MoreEnergy use is second to staffing in building operating costs. Sustainable technology in the energy sector is based on utilizing renewable sources of energy such as solar, wind, glazing systems, insulation. Other areas of focus include heating, ventilation and air conditioning; novel materials and construction methods; improved sensors and monitoring systems; and advanced simulation tools that can help building designers make more energy efficient choices. The objective of this research is studying the effect of insulations on energy consumption of buildings in Iraq and identifying the amount of energy savings from application th
... Show MoreA novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theo
... Show MoreThe idea of the paper is to consolidate Mahgoub transform and variational iteration method (MTVIM) to solve fractional delay differential equations (FDDEs). The fractional derivative was in Caputo sense. The convergences of approximate solutions to exact solution were quick. The MTVIM is characterized by ease of application in various problems and is capable of simplifying the size of computational operations. Several non-linear (FDDEs) were analytically solved as illustrative examples and the results were compared numerically. The results for accentuating the efficiency, performance, and activity of suggested method were shown by comparisons with Adomian Decomposition Method (ADM), Laplace Adomian Decompos
... Show MoreExperimental study of heat transfer coefficients in air-liquid-solid fluidized beds were carried out by measuring the heat rate and the overall temperature differences across the heater at different operating conditions. The experiments were carried out in Q.V.F. glass column of 0.22 m inside diameter and 2.25 m height with an axially mounted cylindrical heater of 0.0367 m diameter and 0.5 m height. The fluidizing media were water as a continuous phase and air as a dispersed phase. Low density (Ploymethyl-methacrylate, 3.17 mm size) and high density (Glass beads, 2.31 mm size) particles were used as solid phase. The bed temperature profiles were measured axially and radially in the bed for different positions. Thermocouples were connecte
... Show MoreTin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two act
... Show MoreIn this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.