Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processing such as filtering. Where different filters like (DC adjustment, triangular FIR, delete mean trace, FIR) have been applied on output image as well as the simulation of the soil and the buried objects layers have been obtained using GPR simulation program. |
Like the digital watermark, which has been highlighted in previous studies, the quantum watermark aims to protect the copyright of any image and to validate its ownership using visible or invisible logos embedded in the cover image. In this paper, we propose a method to include an image logo in a cover image based on quantum fields, where a certain amount of texture is encapsulated to encode the logo image before it is included in the cover image. The method also involves transforming wavelets such as Haar base transformation and geometric transformation. These combination methods achieve a high degree of security and robustness for watermarking technology. The digital results obtained from the experiment show that the values of Peak Sig
... Show MoreImage recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third
... Show MoreBackground: Transitional cell carcinoma of the urinary bladder is one of the important malignancies in both sex groups .It is considered as a heterogenous neoplasm with different
biological behavior, in which the majority are early non invasive with tendency for recurrence and some may progress to invasive tumor. An important clinicopathological features are ,the tumor stage and histological grade which are used as prognostic parameters of the tumor and play an important role in therapy. Due to the subjectivity of the histological grading , the reproducibility was low . Many studies showed the value of quantitative analysis of the tumor as an important method in determining the recurrence of the tumor and
The researcher has studied in his research (International Public Relations methods in building the state's image through Cyberspace)
, analytical study of the Facebook and twitter pages for British foreign office , the role was played by the International Public Relations in building the mental image of British , especially after the new media and internet have became influential role in political life . and became an important tools used by political institutions as ministries of foreign affairs in the twenty: one century .
The researcher identified the problem of this study with the following question:
(what is the role of the International Public Relations in building the mental image of state through Cyberspace)
To answer
In this paper, a compression system with high synthetic architect is introduced, it is based on wavelet transform, polynomial representation and quadtree coding. The bio-orthogonal (tap 9/7) wavelet transform is used to decompose the image signal, and 2D polynomial representation is utilized to prune the existing high scale variation of image signal. Quantization with quadtree coding are followed by shift coding are applied to compress the detail band and the residue part of approximation subband. The test results indicate that the introduced system is simple and fast and it leads to better compression gain in comparison with the case of using first order polynomial approximation.
Raw satellite images are considered high in resolution, especially multispectral images captured by remote sensing satellites. Hence, choosing the suitable compression technique for such images should be carefully considered, especially on-board small satellites, due to the limited resources. This paper presents an overview and classification of the major and state-of-the-art compression techniques utilized in most space missions launched during the last few decades, such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT)-based compression techniques. The pros and cons of the onboard compression methods are presented, giving their specifications and showing the differences among them to provide uni
... Show MoreThis paper deals with a central issue in the field of human communication and reveals the roaming monitoring of the incitement and hatred speech and violence in media, its language and its methods. In this paper, the researcher seeks to provide a scientific framework for the nature of the discourse of incitement, hatred speech, violence, and the role that media can play in solving conflicts with their different dimensions and in building community peace and preventing the emergence of conflicts among different parties and in different environments. In this paper, the following themes are discussed:
The root of the discourse of hatred and incitement
The nature and dimensions of the discourse of incitement and hatred speech
The n
This work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast
... Show MoreImage quality has been estimated and predicted using the signal to noise ratio (SNR). The purpose of this study is to investigate the relationships between body mass index (BMI) and SNR measurements in PET imaging using patient studies with liver cancer. Three groups of 59 patients (24 males and 35 females) were divided according to BMI. After intravenous injection of 0.1 mCi of 18F-FDG per kilogram of body weight, PET emission scans were acquired for (1, 1.5, and 3) min/bed position according to the weight of patient. Because liver is an organ of homogenous metabolism, five region of interest (ROI) were made at the same location, five successive slices of the PET/CT scans to determine the mean uptake (signal) values and its standard deviat
... Show MoreToday’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show More