Nanoparticles generation by laser ablation of a solid target in a liquid environment is an easy method. Cadmium Telluride (CdTe) colloidal nanoparticles have been synthesized by laser ablation Nd:YAG with wavelengths of 1064nm and double frequency at 532 nm, number of pulses 50 pulses, with pulse energy= 620mJ, 700mJ of a solid target CdTe is immersed in double distilled deionized water (DDIW) and in methanol liquid. Influences of the laser energy and different solutions on the formation and optical characterization of the CdTe nanoparticles have been studied using atomic force microscope (AFM) and the UV-Vis absorption. As a results, it leads to the absorbance in UV-Vis spectra of samples prepared in water at laser wavelength of 532nm is lower than the absorbance of 1064nm at same laser energy. AFM images show that CdTe NPs have spherical shape in nanometer size.
This work dealt with separation of naphthenic hydrocarbons from non-naphthenic hydrocarbons and in particular concerns an improved process for increasing the naphthenes concentration in naphtha, The separation was examined using adsorption by Y and B zeolite in a fixed bed process. The concentration of naphthenes in the influent and effluent streams was determined using PONA classification. The effect of different operating variables such as feed flow rate (2- 4 L/hr); bed length (50 - 80 cm) on the adsorption capacity of Y and zeolite was studied. Increasing the bed length lead to increase the naphthenes concentration, and increasing the flow rate lead to decrease in the concentration of naphthenes, It was found that the decrease
... Show MoreTuberculosis status as the second leading causes of significant morbidity and mortality from an infectious disease worldwide, after human immunodeficiency virus (HIV). Sample collection was conducted at the Institute of Chest and Respiratory Diseases/Baghdad Medical City in Baghdad. The collection interval was from August to October 2014, 629 suspected TB patients were examined during this period. The results revealed among total 629 specimens, 56 (8.9%) of the specimens were positive by direct examination and 573 (91.1%) negative specimens by smear microscopy. Fifty six DNA samples were extracted from positive ZN smears of sputum specimens and 40 samples from healthy persons (as control) were subjected to molecular diagnosis by real tim
... Show MoreThe sensitivity of SnO2 nanoparticles/reduced graphene oxide hybrid to NO2 gas is discussed in the present work using density functional theory (DFT). The SnO2 nanoparticles shapes are taken as pyramids, as proved by experiments. The reduced graphene oxide (rGO) edges have oxygen or oxygen-containing functional groups. However, the upper and lower surfaces of rGO are clean, as expected from the oxide reduction procedure. Results show that SnO2 particles are connected at the edges of rGO, making a p-n heterojunction with a reduced agglomeration of SnO2 particles and high gas sensitivity. The DFT results are in
This study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2
... Show MoreCancer disease has a complicated pathophysiology and is one of the major causes of death and morbidity. Classical cancer therapies include chemotherapy, radiation therapy, and immunotherapy. A typical treatment is chemotherapy, which delivers cytotoxic medications to patients to suppress the uncontrolled growth of cancerous cells. Conventional oral medication has a number of drawbacks, including a lack of selectivity, cytotoxicity, and multi-drug resistance, all of which offer significant obstacles to effective cancer treatment. Multidrug resistance (MDR) remains a major challenge for effective cancer chemotherapeutic interventions. The advent of nanotechnology approach has developed the field of tumor diagnosis and treatment. Cancer nanote
... Show MoreA modified chemical method was used to prepare titanium dioxide nanoparticles (TiO2 NPs), which were diagnosed by several techniques: X-ray diffraction, Fourier transform infrared, field emission scaning electron microscopy, energy disperse X-ray, and UV-visible spectroscopy, which proved the success of the preparation process at the nanoscale level. Where the titanium oxide particles have an average particle size equal to 6.8 nm, titanium dioxide particles were used in the process of adsorption of Congo red dye from its aqueous solutions using a batch system. The titanium oxide particles gave an adsorption efficiency of Congo red dye up to more than 79 %. The experimental data of the adsorption process were analyzed with kinetic models and
... Show MoreIn the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show More