Electric Quadrupole transitions are calculated for beryllium isotopes (9, 10, 12 and 14). Calculations with configuration mixing shell model usually under estimate the measured E2 transition strength. Although the consideration of a large basis no core shell model with 2ℏtruncations for 9,10,12 and14 where all major shells s, p, sd are used, fail to describe the measured reduced transition strength without normalizing the matrix elements with effective charges to compensate for the discarded space. Instead of using constant effective charges, excitations out of major shell space are taken into account through a microscopic theory which allows particle–hole excitations from the core and model space orbits to all higher orbits with 2ℏw excitations which are called core-polarization effects. The two body Michigan sum of three ranges Yukawa potential (M3Y) is used for the core-polarization matrix element. The simple harmonic oscillator potential is used to generate the single particle matrix elements of all isotopes considered in this work. The b value of each isotope is adjusted to reproduce the experimental matter radius, These size parameters of the harmonic oscillator almost reproduce all the root mean square (rms) matter radii for 9,10,12,14Be isotopes within the experimental errors. Almost same effective charges are obtained for the neutron- rich Be isotopes which are smaller than the standard values. The major contribution to the transition strength comes from the core polarization effects. The present calculations of the neutron-rich 12,14Beisotopes show a deviation from the general trends in accordance with experimental and other theoretical studies. The configurations arises from the shell model calculations with core-polarization effects reproduce the experimental B(E2) values.
In this study, the stable isotop 18O and 2H has been used to investigate the interaction of surface water (SW), and groundwater (GW) in Al-Taji district/ Northern Baghdad for two seasons (March and August 2022). 16 Samples were collected from water resources in the Al-Taji district (Tigris channel, Tigris River, and groundwater), in each season water samples from 8 Tigris channel, 5 drilled wells, and 3 Tigris River were taken for the analysis of the isotopes 18O and 2H. The average analysis results of 18O and 2H in the Tigris channel, Tigris River, and groundwater were found to be -3.435‰ and -18.6094‰, -2.07167‰ and -17.81‰, -4.125‰ and -34.707‰ respectively. The results, generally, show a comparable range of isotope c
... Show MoreThis research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers a
... Show MoreThis research investigates manganese (Mn) extraction from Electric Arc Furnace Steel Slag (EAFS) by using the Liquid-liquid extraction (LLE) method. The chemical analysis was done on the slag using X-ray fluorescence, X-ray diffraction, and atomic absorption spectroscopy. This work consisted of two parts: the first was an extensive study of the effect of variables that can affect the leaching process rate for Mn element from slag (reaction time, nitric acid concentration, solid to liquid ratio, and stirring speed), and the second part evaluates the extraction of Mn element from leached solution. The results showed the possibility of leaching 83.5 % of Mn element from the slag at a temperature of 25°C, nitric acid co
... Show MoreTheoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO2 semiconductor interface. Available from: https://www.researchgate.net/publication/362773032_Theoretical_studies_of_electronic_transition_characteristics_of_senstizer_molecule_dye_N3-SnO2_semiconductor_interface [accessed May 01 2023].
The PET scans provide images that pinpoint the anatomic location of abnormal metabolic activity within the body. A radionuclide suitable for labeling a wide range of radiopharmaceuticals for positron emission tomography imaging is used also for local therapy of tumors. Among the possible methods for cyclotron production of radionuclide used in PET. We investigate the proton irradiation to produce the standard radionuclide (15O, 11C,1 3N, 18F) and some non-standard Radionuclide (76Br,124I,60Cu,66Ga,86Y and 89Zr). The total integral yield based on the main published and approved experimental results of excitation functions were calculated.
The temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreThe role of the public sector- Investment customizations- economic embargo - The role of the private sector - Coexistence between the public and private sectors - Ratio of growth
The particle-hole state densities have been calculated for 232Th in
the case of incident neutron with , 1 Z Z T T T T and 2 Z T T .
The finite well depth, surface effect, isospin and Pauli correction are
considered in the calculation of the state densities and then the
transition rates. The isospin correction function ( ) iso f has been
examined for different exciton configurations and at different
excitation energies up to 100 MeV. The present results are indicated
that the included corrections have more affected on transition rates
behavior for , , and above 30MeV excitation energy
The biggest problem of structural materials for fusion reactor is the damage caused by the fusion product neutrons to the structural material. If this problem is overcomed, an important milestone will be left behind in fusion energy. One of the important problems of the structural material is that nuclei forming the structural material interacting with fusion neutrons are transmuted to stable or radioactive nuclei via (n, x) (x; alpha, proton, gamma etc.) reactions. In particular, the concentration of helium gas in the structural material increases through deuteron- tritium (D-T) and (n, α) reactions, and this increase significantly changes the microstructure and the properties of the structural materials. T
... Show MoreThis research was carried out to determine the impact of heat shock, electric shock and seeds in soaking nitrous acid mutagen solution on three cultivars of faba beans plant (Zaina, Aguadulce and Local) at the year 2012-2013. Factorial experiment was arranged in randomized complete block design (RCBD) with three replicates were used. The results showed that heat shock lead to early plants of 50% in flowering and an increase in the number of branches/plant and the number of seeds/pod compared to other treatments, whereas the seeds soaked in nitrous acid mutagen solution gave the highest plant height, leaf area index, number of pods/plant, seed weight, seed yield kg/ha, and did not differ significantly with treatment of electric shock in the
... Show More