The characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
(3) (PDF) Theoretical investigation of charge transfer at N3 sensitized molecule dye contact with TiO2 and ZnO semiconductor. Available from: https://www.researchgate.net/publication/362773606_Theoretical_investigation_of_charge_transfer_at_N3_sensitized_molecule_dye_contact_with_TiO2_and_ZnO_semiconductor [accessed May 01 2023].
Tin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K
Glassy polymers like Poly Mathyel Metha Acrylate are usually classified as non-porous materials; they are almost considered as fully transparent. Thin samples of these materials reflect color changing followed by porous formation and consequently cracking when exposed to certain level of ?-irradiation. The more the dose is the higher the effect have been observed. The optical microscope and UV-VIS spectroscopy have clearly approved these consequences especially for doped polymers.
A statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion c
The synthesis and bioactivity of zinc oxide nanoparticles has been extensively studied. The antibacterial activity of different antibiotics individually (ceftriaxone (C), chloramphenicol (CRO), penicillin (P) and amoxicillin (Ax)) and Zinc oxide nanoparticles (60μg/ml) in combination with the previously mentioned antibiotics has been demonstrated in the present study by using the disk diffusion assay method. The results showed a synergistic effect between Zinc oxide nanoparticles (ZnO NPs) and both Ax and P for most of the studied Gram-positive isolates (Staphylococcus aureus1, Staphylococcus aureus2, Staphylococcus epidermidis1, Staphylococcus epidermidis2, Enterococcus faecalis1, Enterococcus faecalis2 ) and between ZnO NPs and both C
... Show More The Dopping effect by methyl orange ( )on optical constants [Refractive index (n), extinction coefficient(K0),real and imaginary parts of dielectric constant(εr &εi)] of poly methyl methacrylat (PMMA) that additive to this polymer with both percentages 2% and 4% at thickness(145)µm have been studied. This study has been done by recording the absorption and transmission spectra in the wavelength range (200-900)nm . The results showed that all optical parameters are increased by increasing dopping rate except the transmission was decreased.
The existing investigation explains the consequence of irradiation of violet laser on the optic properties of (CoO2) films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser in this technique. From the XRD analysis, the crystalline existence with trigonal crystal system was when the received films were processed by continuous violet laser (405 nm) with power (1W) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time(0,30,45,60,75,90 min