Preferred Language
Articles
/
ijp-319
Classification of the galaxy Milky Way using variable precision rough sets technique
...Show More Authors

Astronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 01 2025
Journal Name
Journal Of Physics: Conference Series
Advanced Machine Learning Models for Banana Sweetness Classification
...Show More Authors

It takes a lot of time to classify the banana slices by sweetness level using traditional methods. By assessing the quality of fruits more focus is placed on its sweetness as well as the color since they affect the taste. The reason for sorting banana slices by their sweetness is to estimate the ripeness of bananas using the sweetness and color values of the slices. This classifying system assists in establishing the degree of ripeness of bananas needed for processing and consumption. The purpose of this article is to compare the efficiency of the SVM-linear, SVM-polynomial, and LDA classification of the sweetness of banana slices by their LRV level. The result of the experiment showed that the highest accuracy of 96.66% was achieved by the

... Show More
View Publication
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Craniofacial Surgery
Single Session Facial Lipostructure by Using Autologous Fat Mixed With Platelet-Rich Fibrin Injected by Using Facial Autologous Muscular Injection Technique
...Show More Authors
Aim:

This study was designed to evaluate the role of single session autologous facial fat grafting in correcting facial asymmetries after mixing it with platelet-rich fibrin (PRF) and injecting them into rich vascular facial muscular plane.

Materials and Methods:

Fifteen patients (12 females and 3 males) with age ranging from 18 years to 40 years were included in this study and followed up during 6 months, all the patients were treated in the Al-Shaheed Ghazi Al-Hariri for specialized surgeries hospital (Medical City, Baghdad, Iraq).

Auto

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 15 2022
Journal Name
Knowledge And Information Systems
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
A Crime Data Analysis of Prediction Based on Classification Approaches
...Show More Authors

Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Two-Stage Classification of Breast Tumor Biomarkers for Iraqi Women
...Show More Authors

Objective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.

Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying the Classification of Texture Images by K-Means of Co-Occurrence Matrix and Confusion Matrix
...Show More Authors

In this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between every

... Show More
Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Marketing decisions as an intermediary variable of the nature of the relationship between Environmental Turbulence and marketing effectiveness exploratory study of Carrefour branches in Erbil Governorate
...Show More Authors

The organizations, represented by its Management, are working hard in various ways to identify the environmental disturbances that occur in their environment and to investigate and follow up the movement of these disturbances and to respond to them through the decisions they make in an attempt to keep pace with the work and sustainability of their activities, including those decisions, marketing decisions taken by the environmental disturbulence in the market of the organization, the inability of these organizations to read the indicators of these disturbulence correctly displays their marketing effectiveness to vibration and decline in the negative.The current research is based on a fundamental problem that envi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Aug 28 2022
Journal Name
Geodesy And Cartography
OBJECT-BASED APPROACHES FOR LAND USE-LAND COVER CLASSIFICATION USING HIGH RESOLUTION QUICK BIRD SATELLITE IMAGERY (A CASE STUDY: KERBELA, IRAQ)
...Show More Authors

Land Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that

... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Karbala International Journal Of Modern Science
Adaptive reconstruction of the heterogeneous scan line ETM+ correction technique
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref