Astronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.
The Reversed Phase High Performance Liquid Chromatography (RP-HPLC) has been used for the separation of Poly aromatic hydrocarbons(PAHs) by using column Reprosil 100 C 18 which was found to be a suitable one for this purpose. The result showed that using mobile phase of (Acetonitrile-water) Reversed Phase HPLC , flow rate of (1.2 ml/min) , column temperature (30CËš) and wave length of (254nm), give a complete separation with a good resolution . The total separation time was less than 20 min. The result of the study showed that the vegetables of Baghdad city were polluted by poly aromatic hydrocarbons(PAHs) in different places where samples taken because of drainage of the heavy water ,industrial trash and trash of oil colanders. -
... Show MoreA total of 258 voluntary blood donors (males 101; females 157) in the age range of 18-52 yr among males and 18-55 yr among females were examined for Toxoplasma gondii antibodies (IgG), and (IgM) by immunological technique (Enzyme linked Immunosorbant Assay) during the period from March 2009 to April 2010. This study covered a wide range of factors including immunological, age ,sex , place of residence and symptoms that may have a possible relationship with toxoplasmosis. Results presented in this study showed clearly that 38 (14.7%) of individuals participated in this study having IgG Toxoplasma Ab, among those 10 samples (9.9%) were males and 28 samples (17.8%) were females. Moreover, we found the prevalence of IgM seropositivity in th
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreIn the present research the flame retardancy to buildings and industrial foundations which are manufacturing from advanced polymeric composite material was increased by coating it with surface layer included flame retardant material. A(3mm) thick antimony tetroxide was used as a coated layer to retard and prevent the flame spread to the coating surface of polyester resin (SIROPOL 8340-PI) reinforced with hybrid fibers as a woven roving (°45-°0) consist of carbon and kevlar (49) fibers, and exposed it to direct flame generated from gas torch at temperature of (2000ºC), at different exposed distance (10,15,20mm)and study the rang of resistance for this layer and its ability to protec
... Show MoreBackground: preparation of root canals is an important step in root canal treatment. Mechanical instrumentation of root canals cause an irregular layer of debris, known as the smear layer. As a result, several studies reported that preferring the removal of the smear layer. Objective: To study the influence of the energy (100 mJ) of Erbium, Chromium: Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser at short pulse duration (60 μs) on smear layer removal of apical third after using Photon induced photoacoustic streaming technique. Materials and methods: Eighteen straight single-rooted mandibular premolars were used. The roots length were uniform to 14mm from the anatomic apex and
... Show MoreIn this paper, a new approach was suggested to the method of Gauss Seidel through the controlling of equations installation before the beginning of the method in the traditional way. New structure of equations occur after the diagnosis of the variable that causes the fluctuation and the slow extract of the results, then eradicating this variable. This procedure leads to a higher accuracy and less number of steps than the old method. By using the this proposed method, there will be a possibility of solving many of divergent values equations which cannot be solved by the old style.
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreThis abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show More