Astronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.
The paired sample t-test for testing the difference between two means in paired data is not robust against the violation of the normality assumption. In this paper, some alternative robust tests have been suggested by using the bootstrap method in addition to combining the bootstrap method with the W.M test. Monte Carlo simulation experiments were employed to study the performance of the test statistics of each of these three tests depending on type one error rates and the power rates of the test statistics. The three tests have been applied on different sample sizes generated from three distributions represented by Bivariate normal distribution, Bivariate contaminated normal distribution, and the Bivariate Exponential distribution.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe aim of this research is analysis the effect of the changes in (GDA, g, inflation) at average and standard economic curriculum in composition of the models, depending on SPSS program in analysis, and according to available date from central bank of Iraq and during the period from 2003 to 2018 and by using OLS and estimate of the equation and the results showed a statistical significance relation in incorporeal level 5% and the R2 value equal to 92.1 refer to the changes in independent variables explain 92% of changes of unemployment and the independent variables effect are very limit depend on estimated parameters in the model and respectively (0.986,0.229,-0.060), the research recommended necessity to active the inve
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThe High Power Amplifiers (HPAs), which are used in wireless communication, are distinctly characterized by nonlinear properties. The linearity of the HPA can be accomplished by retreating an HPA to put it in a linear region on account of power performance loss. Meanwhile the Orthogonal Frequency Division Multiplex signal is very rough. Therefore, it will be required a large undo to the linear action area that leads to a vital loss in power efficiency. Thereby, back-off is not a positive solution. A Simplicial Canonical Piecewise-Linear (SCPWL) model based digital predistorters are widely employed to compensating the nonlinear distortion that introduced by a HPA component in OFDM technology. In this paper, the genetic al
... Show More