An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tassie model together with the derived form of the ground
state charge density distribution. In this work, we devote our
investigation on 0 3 2 3 1 1
transition of Ti 50 , 0 1 2 1 1 1
transition
of Cr 50 and 0 2 2 2 1 1
of Cr 52 nuclei. It is found that the core
polarization effects, which represent the collective modes, are
essential for reproducing a remarkable agreement between the
calculated inelastic longitudinal C2 form factors and those of
experimental data.
The magnetic dipole moments and the root mean square radius have been calculated some the Fluorine (A= 17, 19, 20, 21) isotopes based on the sd-shell model using universal sd-shell interaction A (USDA). All studied isotopes are composed of 16O nucleus that is considered as an inert core and the other valence particles are moving over the sd-shell model space within 1d5/2, 2s1/2 and 1d3/2 orbits. The configuration of mixing shell model with limiting number of orbitals in the model space outside the inert core fail to reproduce the measured magnetic dipole moments. Therefore, and for the purpose of enhancing the calculations, the discarded space has been included the core polarization effect through the effective g-factors. The harmonic os
... Show MoreIn the present study, the properties of the light elements, namely, H, He, Li, and Be, have been reviewed. Specifically, the nuclear decay of these nuclei has been reviewed. The mystery of the nuclear decay and potential is behind this work. The role of neutron has been investigated. The N/Z ratio has also been investigated in the study to relate the nuclear decay with the ratio. A new formula for nuclear potential has been suggested in the present study. This formula can describe the binding energy potential and the decayed particle energy depending on the N/Z ratio.
The effective Skyrme type interactions have been used in the Haretree-Fock
mean-field model for several decades, and many different parameterizations of the
interaction have been realized to better reproduce nuclear masses, radii, and various
other data. In the present research, the SkM, SkM*, SI, SIII, SIV, T3, Sly4, Skxs15,
Skxs20 and Skxs25 Skyrme parameterizations have been used within Haretree-Fock
(HF) method to investigate some static and dynamic nuclear ground state properties
of 174-206Hg isotopes. In particular, the binding energy per nucleon, proton, neutron,
mass and charge densities and corresponding root mean square radii, neutron skin
thickness and charge form factor. The calculated results are comp
Over the last few decades the mean field approach using selfconsistent
Haretree-Fock (HF) calculations with Skyrme effective
interactions have been found very satisfactory in reproducing
nuclear properties for both stable and unstable nuclei. They are
based on effective energy-density functional, often formulated in
terms of effective density-dependent nucleon–nucleon interactions.
In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,
Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have been
used within HF method to investigate some static and dynamic
nuclear ground state proprieties of 84-108Mo isotopes. In particular,
the binding energy, proton, neutron, mass and charge densities
Elastic electron scattering form factors, charge density distributions and charge,
neutron and matter root mean square (rms) radii for P
24
PMg, P
28
PSi and P
32
PS nuclei are
studied using the effect of occupation numbers. Single-particle radial wave functions
of harmonic-oscillators (HO) potential are used. In general, the results of elastic
charge form factors showed good agreement with experimental data. The occupation
numbers are taken to reproduce the quantities mentioned above. The inclusion of
occupation numbers enhances the form factors to become closer to the data. For the
calculated charge density distributions, the results show good agreement with
experimental data except the fail to
paper
The charge density distributions (CDD) and the elastic electron
scattering form factors F(q) of the ground state for some even mass
nuclei in the 2s 1d shell ( Ne Mg Si 20 24 28 , , and S 32 ) nuclei have
been calculated based on the use of occupation numbers of the states
and the single particle wave functions of the harmonic oscillator
potential with size parameters chosen to reproduce the observed root
mean square charge radii for all considered nuclei. It is found that
introducing additional parameters, namely 1 , and , 2 which
reflect the difference of the occupation numbers of the states from
the prediction of the simple shell model leads to a remarkable
agreement between the calculated an
The radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee
... Show MoreThe radial wave functions of the generalise dWoods–Saxon (GWS) potential within the two-body model of (Core + n) have been used to study the ground-state density distributions of protons, neutrons and matter and the associated root mean square (rms) radii of neutron-rich 14B, 22N, 23O and 24F halo nuclei. The calculated results show that the radial wave functions of the generalised Woods–Saxon potential within the two-body model succeed in reproducing neutron halo in these exotic nuclei. Elastic electron scattering form factors for these nuclei are studied by combining the charge density distributions with the plane-wave Born approximation (PWBA).