This research including lineament automated extraction by using PCI Geomatica program, depending on satellite image and lineament analysis by using GIS program. Analysis included density analysis, length density analysis and intersection density analysis. When calculate the slope map for the study area, found the relationship between the slope and lineament density.
The lineament density increases in the regions that have high values for the slope, show that lineament play an important role in the classification process as it isolates the class for the other were observed in Iranian territory, clearly, also show that one of the lineament hit shoulders of Galal Badra dam and the surrounding areas dam. So should take into consideration the lineaments because its plays an important role in the study area.
In the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
Background: Traditionally, evaluation of the results of immunohistochemistry was done by visual quantification.
Materials and methods: for reliable evaluation, more time-efficient and user friendly method we used simple computer program with image analysis options as independent parameters for reading positive results. To test the validity of visually scored results, we compare and correlate the results of Digital image analysis (DIA) variables with the visual scores of 280 pictures taken from entire stained glioma tumor sections for Bcl-2 and P53 oncoproteins in different glioma tumor grades.
Results: In this study, rates expression of both oncoproteins was evaluated visually in glioma tumor samples (
Different ANN architectures of MLP have been trained by BP and used to analyze Landsat TM images. Two different approaches have been applied for training: an ordinary approach (for one hidden layer M-H1-L & two hidden layers M-H1-H2-L) and one-against-all strategy (for one hidden layer (M-H1-1)xL, & two hidden layers (M-H1-H2-1)xL). Classification accuracy up to 90% has been achieved using one-against-all strategy with two hidden layers architecture. The performance of one-against-all approach is slightly better than the ordinary approach
The present study is a hybrid method of studying the effect of plasma on the living tissue by using the image processing technique. This research explains the effect of microwave plasma on the DNA cell using the comet score application, texture analysis image processing and the effect of microwave plasma on the liver using texture analysis image processing. The study was applied on the mice cells. The exposure to the plasma is done by dividing the mice for four groups, each group includes four mice (control group, 20, 50, 90 second exposure to microwave plasma). The exposure to microwave plasma was done with voltage 175v and gas flow on 2 with room temperature; the statistical features are obtained from the comet score images and the textur
... Show MoreIn this paper, a new tunable approach for fusion the satellite images that fall in different electromagnetic wave ranges is presented, which gives us the ability to make one of the images features little superior on the other without reducing the general resultant image fusion quality, this approach is based on the principal component analysis (PCA) fusion method. A comparison made is between the results of the proposed approach and two fusion methods (they are: the PCA fusion method and the projection of eigenvectors on the bands fusion method), and the comparison results show the validity of this new method.
In this study, an analysis of re-using the JPEG lossy algorithm on the quality of satellite imagery is presented. The standard JPEG compression algorithm is adopted and applied using Irfan view program, the rang of JPEG quality that used is 50-100.Depending on the calculated satellite image quality variation, the maximum number of the re-use of the JPEG lossy algorithm adopted in this study is 50 times. The image quality degradation to the JPEG quality factor and the number of re-use of the JPEG algorithm to store the satellite image is analyzed.