Preferred Language
Articles
/
ijp-292
The effect of thickness on the optical properties of Cu2S thin films
...Show More Authors

In this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such
as extinction coefficient, refractive index and the imaginary part of
the dielectric constant have similar termed of variation for the
absorption coefficient.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Effect of sputtering power on optical Properties of RF sputtering deposited Ti6Al4V Thin Films
...Show More Authors

Ti6Al4V thin film was prepared on glass substrate by RF
sputtering method. The effect of RF power on the optical properties
of the thin films has been investigated using UV-visible
Spectrophotometer. It's found that the absorbance and the extinction
coefficient (k) for deposited thin films increase with increasing
applied power, while another parameters such as dielectric constant
and refractive index decrease with increasing RF power.

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
The Effect of Chlorine Concentration on the Optical Constants of SnS Thin Films
...Show More Authors

Chlorine doped SnS have been prepared utilizing chemical spray pyrolysis. The effects of chlorine concentration on the optical constants were studied. It was seen that the transmittance decreased with doping, while reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were increased as the doping percentage increased. The results show also that the skin depth decrease as the chlorine percentage increased which could be assure that it is transmittance related.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 12 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability
The effect of doping process on the structural and optical properties of Ag2Se thin films.
...Show More Authors

Preview PDF
Publication Date
Mon Jun 10 2013
Journal Name
International Journal Of Application Or Innovation In Engineering & Management (ijaiem)
The Effect of Annealing Temperature on the Optical Properties of CdS and CdS:Al Thin Films
...Show More Authors

Cadmium sulfide and Aluminum doped CdS thin films were prepared by thermal evaporation technique in vacuum on a heated glass substrates at 373K. A comparison between the optical properties of the pure and doped films was made through measuring and analyzing the transmittance curves, and the effect of the annealing temperature on these properties were estimated. All the films were found to exhibit high transmittance in the visible/ near infrared region from 500nm to 1100nm.The optical band gap energy was found to be in the range 2.68-2.60 eV and 2.65-2.44 eV for CdS and CdS:Al respectively , with changing the annealing temperature from room temperature to 423K.Optical constants such as refractive index, extinction coefficient, and complex di

... Show More
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Effect of the Thickness and Annealing Temperature on the Structural Properties of Thin CdS Films Prepared by Thermal Evaporation
...Show More Authors

A thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.

View Publication Preview PDF
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Annealing Effect on Some Optical Properties of Cr2O3 Thin Films Prepared by Spray Pyrolysis Technique
...Show More Authors

Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.

View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Annealing temperature effect on the structural and optical properties of thermally deposited nanocrystalline CdS thin films
...Show More Authors

A nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Thickness and gamma-ray effect on physical properties of CdO thin films grown by pulsed laser deposition
...Show More Authors

Polycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Studying The Optical Properties of CdO and CdO: Bi Thin Films
...Show More Authors

Cadmium Oxide and Bi doped Cadmium Oxide thin films are prepared by using the chemical spray pyrolysis technique a glass substrate at a temperature of (400?C) with volumetric concentration (2,4)%. The thickness of all prepared films is about (400±20) nm. Transmittance and Absorbance spectra are recorded in the wave length ranged (400-800) nm. The nature of electronic transitions is determined, it is found out that these films have directly allowed transition with an optical energy gap of (2.37( eV for CdO and ) 2.59, 2.62) eV for (2% ,4%) Bi doped CdO respectively. The optical constants have been evaluated before and after doping.

View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Ovonic Research
Effect of dopant of aluminum on the structural and optical properties of NiTsPc thin films
...Show More Authors