Iron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
concentration. The tensile strength results reveal that the tensile
strength and the strain values of composite samples decreases when
the Iron particles concentration increase. After conducted
immersion processes the results of hardness are reduced wears the
results of tensile strength and the impact strength are increased.
Several amine liquid selective electrodes were prepared based on
two active materials, phenol sulfonic acid and l ,2-dihydroxy-3,5- disulfonic acid disodium salt with several plasticizers, di-n-butyl phthalate(ORPH), tri-n-butyl phosphate (TBP) and a-nitro phenyl octyl ether (NPOE). Electrode parameters were studied including, concentration range, detection limit, slope, life time, response time and
... Show MoreIn this work Study effect of annealing temperature on the Structure
of a-Se and electrical properties of a-Se/c-Si hetrojunction have been
studied.The hetrojunction fabricated by deposition of a-Se film on c-
Si using thermal evaporation.
Electrical properties of a-Se/ c-Si heterojunction include I-V
characteristics, in dark at different annealing temperature and C-V
characteristics are considered in the present work.
C-V characteristics suggested that the fabricated diode was
abrupt type, built in potential determined by extrapolation from
1/C2-V curve. The built - in potential (Vbi) for the Se/ Si System
was found to be increase from 1.21 to 1.62eV with increasing of
annealing temperature
In this research, the possibility of using waste wooden materials (reed and sawdust) was studied to produce sustainable and thermal insulation lightweight building units , which has economic and environmental advantages. This study is intended to produce light weight building units with low thermal conductivity, so it can be used as partitions to improve the thermal insulation in buildings. Waste wooden materials were used as a partial replacement of natural sand, in different percentages (10, 20, 30, and 40) % . The mix proportions were (1:2.5) (cement: fine aggregate) with w/c of 0.4. The values of 28 days oven dry density ranged between (2060-1693) kg/m3.The thermal conductivity decreased from (0.745 to 0.2
... Show MoreThe undertaken study includes investigating the performance and effluent characteristics of the treatment plant of Al-Doura refinery. Influent concentrations for some important contaminants, which are TDS, oil and grease, TSS, COD, BOD, and turbidity were 2595 mg/L, 13934 mg/L, 466.45 mg/L, 2538.9 mg/L, 1739.2 mg/L, and 89.18 NTU, respectively, while the effluent concentrations were 1337.8 mg/L, 0.53mg/L, 21.7mg/L, 25.45 mg/L, 17.81 mg/L, and 7.08 NTU, respectively, giving removal efficiencies of 44.47%, 99.99%, 94.4%, 98.96%, 98.96% and 92.05%, respectively. All these results indicate that Al-Doura wastewater treatment plant was efficient in removing contaminants according to Iraqi and EPA specifications. Hence, the second part of this
... Show MoreThe aim of this study is to determine the flexural properties of steel fiber as a metal fiber and polyester resin as a matrix. The steel fibers were added to polyester resin at the various fiber volume fractions of 5, 10, and 15% steel fiber, and with different fiber orientations such as woven steel fiber type (0-45) ° and woven steel fiber type (0-90) ° indicate. Hand layup processes in these experiments were used to produce specimens test with the curing time of 24 hr. for the composite at room temperature. The results show that the flexural strength and flexural modulus values for 15 % vol.of woven steel fiber composite type (0-90) ° are (210MPa) and (2.29GPa( respectively. The results above indicate that the woven steel fiber (0-9
... Show MoreThis contribution evaluates the influence of Cr doping on the ground state properties of SrTiO3 Perovskite using GGA-PBE approximation. Results of the simulated model infer agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ doping levels in SrTiO3 has been investigated. Structural parameters infer that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Substituting Ti site by Cr3+ results the energy gap in being eliminated revealing a new electrical case of conducting material for the system. Furthermore, it has been noticed that Cr doping either at Sr or Ti positions could effectiv
... Show MoreThis research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show MoreThe influence of Cr3+ doping on the ground state properties of SrTiO3 perovskite was evaluated using GGA-PBE approximation. Computational modeling results infered an agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ introducing into SrTiO3 were investigated. Structural parameters assumed that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Besides, results showed that the band gap was reduced by approximately 50% when presenting one Cr3+ atom into the SrTiO3 system and particularly positioned at Sr sites. Interestingly, substituting Ti site by Cr3+ led to eliminating the band ga
... Show More