Iron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
concentration. The tensile strength results reveal that the tensile
strength and the strain values of composite samples decreases when
the Iron particles concentration increase. After conducted
immersion processes the results of hardness are reduced wears the
results of tensile strength and the impact strength are increased.
The electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
In this research study the effect of fish in alternating electrical properties at room temperature copper oxide membranes and fish prepared in a manner different thermal spraying chemical on a thin glass bases and heated
The research discussed the topic of the functional role of responsive materials in being elements of a functional transformation in the design of industrial products, based on the study of the structures of smart materials and their performance capabilities at the level of action and self-reaction that characterize this type of materials.
Basic features of responsive materials have been identified to be elements of self-functional insertion into the industrial product design, which contributes to raising the efficiency and functional capacity of the industrial product and enhancing the ability of products to perform self-acting interactions in the structural structure of the material structure of the product and its ability to res
... Show MoreZinc oxide films (ZnO) are prepared by an electrolysis technique and without vacuum and then annealed atvarious temperatures (300,400,500)OC for an hour. The structural analysis performed by X-Ray diffraction (XRD) shows,dominant orientation of this films is plane (101), has a hexagonal structure and polycrystalline pattern and it was is found that the crystal size increases(24,29) nm at annealing temperatures (300, 400)° C, but the crystal size decreases to (20 nm) at annealing temperature (500 ° C). As the results of a surface nature study of these films showed by examining the atomic force microscope (AFM), the grain size increases from (60.79 to 88.11) nm, and the surface roughnes
... Show MoreThe proton-neutron interacting boson model (IBM-2) has been used to make a schematic study of the Ruthenium ( ) isotopes of mass region around with and . For each isotope of the values of the IBM-2 Hamiltonian parameters, which yield an acceptable results for excitation energies in comparison with those of experimental data, have been determined. Fixed values of the effective charges ( ) and of the proton and neutron g factors ( and ) have been chosen for all isotopes under study. The calculated electric quadrupole moments of state, transitions, the magnetic dipole moments transitions and mixing ratios are in reasonable agreement with the experimental data.
... Show MoreThe electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.