In this work, varying compositions of SiO2 micro filler were added
with the Polyvinyl Chloride (PVC) and samples have been prepared
using film casting technique. The results have been analyzed and
compared for PVC samples with (1 wt%, 3 wt%, 5 wt% and 10 wt%)
SiO2 micro filler. Mechanical characteristics such as tensile strength,
elongation at break and Young`s modulus were measured for all the
samples, where the tensile strength was increased from 8.39 Mpa for
purified PVC to 16 Mpa for 3% SiO2/PVC composite. Also, thermal
conductivity measurement values illustrated that composite materials
have a good thermal insulation at 10 wt. %, thermal conductivity was
decreased from 0.1684 W/m. K for PVC to 0.1310W/m. K at 10%
SiO2/PVC composite. Absorptivity test was also carried out for these
samples, the results of this study proved that PVC and SiO2-PVC
composites have low diffusion coefficients ranging from (10-13- 10-10
m2/s). Similarly, the dielectric properties like dielectric constant, loss
factor, resistance, and volume resistivity were performed; the
dielectric constant was increased from 2.1039 for PVC to 3.658 for
3% SiO2/PVC composites, while the dielectric loss factor was
decreased from 0.0144 for PVC to 0.0137 for 5%SiO2/PVC
composite. The values of resistance were increased from
17259.99(Ω) for purified PVC to 29185.75(Ω) for 10% SiO2/PVC
composites. Volume resistivity was increased from 0.3794 x109 (Ω.
cm) for PVC to 0.5179x109 (Ω. cm) for 10% SiO2/PVC composites.
FTIR spectroscopy was employed for all PVC-composite samples
and its results were investigated, there are systematic increases in
absorbance intensity spectra with SiO2 ratios attributed to good
distribution of inorganic fillers (Symmetric increases). The
microstructure and morphology of the prepared samples were
investigated by using optical microscope. It can be observed that, the
samples with (3% SiO2/PVC) are glossy and smooth without
agglomeration of (SiO2) particles in (PVC) matrix. The results
demonstrate that PVC-composite films prepared in this study show
promising potential to achieve good materials for plastic packaging
applications.
The aim of this study is to understand the effect of addition carbon types on aluminum electrical conductivity which used three fillers of carbon reinforced aluminum at different weight fractions. The experimental results showed that electrical conductivity of aluminum was decreased by the addition all carbon types, also at low weight fraction of carbon black; it reached (4.53S/cm), whereas it was appeared highly increasing for each carbon fiber and synthetic graphite. At (45%) weight fraction the electrical conductivity was decreased to (4.36Scm) and (4.27Scm) for each carbon fiber and synthetic graphite, respectively. While it was reached to maximum value with carbon black. Hybrid composites were investigated also; the results exhibit tha
... Show MoreDue to increased consumption of resources, especially energy it was necessary to find alternatives characterized by the same quality as well as being of less expensive, and most important of these alternatives are characterized by waste and the fact that humancannot stop consumption. So we have consideredwaste as an alternative and cheap economic resources and by using environmental index the MIP (input materials per unit ,unit / service) is based on the grounds that the product is not the end of itselfit is a product to meet the need of a product or service, awarded a resource input and output within the five basic elements are the raw materials is ecological, Raw materials ecological, water, air and soil erosion for a
... Show MoreCr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.
Introduction: Methadone hydrochloride (MDN) is an effective pharmacological substitution treatment for opioids dependence, adopted in different countries as methadone maintenance treatment (MMT) programmes. However, MDN can exacerbate the addiction problem if it is abused and injected intravenously, and the frequent visits to the MMT centres can reduce patient compliance. The overall aim of this study is to develop a novel extended-release capsule of MDN using the sol-gel silica (SGS) technique that has the potential to counteract medication-tampering techniques and associated health risks and reduce the frequent visits to MMT centres. Methods: For MDN recrystallisation, a closed container method (CCM) and hot-stage method (HSM) were conduc
... Show MoreThe Nano materials play a very important role in the heat transfer enhancement. An experimental investigation has been done to understand the behaviors of nano and micro materials on critical heat flux. Pool boiling experiments have used for several concentrations of nano and micro particles on a 0.4 mm diameter nickel chrome (Ni-Cr) wire heater which is heated electrically at atmospheric pressure. Zinc oxide(ZnO) and silica(SiO2) were used as a nano and micro fluids with concentrations (0.01,0.05,0.1,0.3,0.5,1 g/L), a marked enhancement in CHF have been shown in the results for nano and micro fluids for different concentrations compared to distilled water. The deposition of the nano particles on the heater surface was the rea
... Show MoreThe adsorption of Malonic acid, Succinic acid, Adipic acid, and Azelaic acid from their aqueous solutions on zinc oxide surface were investigated. The adsorption efficiency was investigated using various factors such as adsorbent amount, contact time, initial concentration, and temperature. Optimum conditions for acids removal from its aqueous solutions were found to be adsorbent dose (0.2 g), equilibrium contact time (40 minutes), initial acids concentration (0.005 M). Variation of temperature as a function of adsorption efficiency showed that increasing the temperature would result in decreasing the adsorption ability. Kinetic modeling by applying the pseudo-second order model can provide a better fit of the data with a greater correla
... Show MoreSteel fiber aluminum matrix composites were prepared by atomization technique. Different air atomization conditions were considered; which were atomization pressure and distance between sample and nozzle. Tensile stress properties were studied. XRF and XRD techniques were used to study the primary compositions and the structure of the raw materials and the atomized products. The tensile results showed that the best reported tensile strength observed for an atomization pressure equal to 4 mbar and sample to nozzle distance equal to 12 cm. Young modulus results showed that the best result occurred with an air atomization pressure equal to 8 mbar and sample to nozzle distance equal to 16cm