The effect of Al dust particles on glow discharge regions, discharge
voltage, discharge current, plasma potential, floating potential,
electron density and electron temperature in planar magnetron
sputtering device has been studied experimentally. Four cylindrical
Langmuir probes were employed to measure plasma parameters at
different point on the radial axis of plasma column. The results
shows the present of Al dust causes to increase the discharge voltage
and reduce the discharge current. There are two electron groups in
the present and absent of Al dust particles. The radial profiles of
plasma parameters in the present of dust are non- uniform. The
floating potential of probe becomes more negatively while the
plasma potential becomes positive when the dust immersed into
plasma region. The electron density increases in the present of dust
particle which lead to decreases the electron temperature.
Previously many properties of graphene oxide in the field of medicine, biological environment and in the field of energy have been studied. This diversity in properties is due to the possibility of modification on the composition of this Nano compound, where the Graphene oxide is capable of more modification via addition other functional groups on its surface or at the edges of the sheet. The reason for this modification possibility is that the Sp3 hybridization (tetrahedral structure) of the carbon atoms in graphene oxide, and it contains many oxygenic functional groups that are able to reac with other groups. In this research the effect of addition of some amine compounds on electrical properties of graphene oxide has been studied by the
... Show MoreTwo series of 1,3,4-oxadiazole derivatives at the sixth position of the 2,4-di-
In this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister
... Show MoreMicrowave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show MoreThis study focuses on producing wood-plastic composites using unsaturated polyester resin reinforced with Pistacia vera shell particles and wood industry waste powder. Composites with reinforcement ratios of 0%, 20%, 30%, and 40% were prepared and tested for thermal conductivity, impact strength, hardness, and compressive strength. The results revealed that thermal conductivity increases with reinforcement, while maintaining good thermal insulation, reaching a peak value of 0.633453 W/m·K. Hardness decreased with increased reinforcement, reaching a minimum nominal hardness value of 0.9479. Meanwhile, impact strength and compressive strength improved, with peak values of 14.103 k/m² and 57.3864568 MPa, respectively. The main aim is to manu
... Show MoreDye-sensitized solar cells (DSSC) create imitation photosynthesis by using chemical reactions to produce electricity from sunlight. DSSC has been pursued in numerous studies due to its capability to achieve efficiencies of up to 15% with artificial photosensitizer in diffuse light. However, artificial photosensitizers present a limitation because of the complex processing of metal compound. Therefore, various types of sensitizers were developed and synthesized to surpass the artificial sensitizer performances such as natural sensitizers from bio-based materials including plants, due to simple processing techniques and low environmental impact. Thus, this study examines the potential and properties of natural sensitizers from the was
... Show MoreThe new compounds of pyrazolines were synthesized from the reaction of different acid hydrazide with ethylacetoacetate and ethanol under reflux. These compounds were obtained from many sequence reactions. The 4-acetyl-5-methyl-2,4-dihydro-3H-pyrazol-3-one compounds synthesized from the reaction of 5-methyl-2,4-dihydro-3H-pyrazol-3-one with acetyl chloride in calcium hydroxide and 1,4-dioxane. Finaly, Schiff bases were prepared via condensation reaction of products of mono- and tri ketone derivatives[IV]a, b with phenyl hydrazines as presented in (Scheme 1, 2). The synthesized compounds were identification by using FTIR, NMR and Mass spectroscopy (of some of them).
Background: One of the most common problem associated with the used of soft denture lining material is microorganisms and fungal growth especially Candida albicans, which can result in chronic mucosal inflammation. The aim of this study was to evaluate the influence of chlorhexidine diacetate (CDA) salt Incorporation into soft denture lining material on antifungal activity; against Candida albicans, and the amount of chlorhexidine di-acetate salt leached out of soft liner/CDA composite. Furthermore, evaluate shear bond strength and hardness after CDA addition to soft liner Materials and methods: chlorhexidine diacetate salt was added to soft denture lining material at four different concentrations (0.05%, 0.1% and 0.2% by weight). Four hund
... Show MoreThe Sonic Scanner is a multifunctional instrument designed to log wells, assess elastic characteristics, and support reservoir characterisation. Furthermore, it facilitates comprehension of rock mechanics, gas detection, and well positioning, while also furnishing data for geomechanical computations and sand management. The present work involved the application of the Sonic Scanner for both basic and advanced processing of oil-well-penetrating carbonate media. The study aimed to characterize the compressional, shear, Stoneley slowness, rock mechanical properties, and Shear anisotropy analysis of the formation. Except for intervals where significant washouts are encountered, the data quality of the Monopole, Dipole, and Stoneley modes is gen
... Show More